Suppression of quasiparticle poisoning in transmon qubits by gap engineering

  1. Plamen Kamenov,
  2. Thomas DiNapoli,
  3. Michael Gershenson,
  4. and Srivatsan Chakram
The performance of various superconducting devices operating at ultra-low temperatures is impaired by the presence of non-equilibrium quasiparticles. Inelastic quasiparticle (QP) tunneling
across Josephson junctions in superconducting qubits results in decoherence and spurious excitations and, notably, can trigger correlated errors that severely impede quantum error correction. In this work, we use „gap engineering“ to suppress the tunneling of low-energy quasiparticles in Al-based transmon qubits, a leading building block for superconducting quantum processors. By implementing potential barriers for QP, we strongly suppress QP tunneling across the junction and preserve charge parity for over 103 seconds. The suppression of QP tunneling also results in a reduction in the qubit energy relaxation rates. The demonstrated approach to gap engineering can be easily implemented in all Al-based circuits with Josephson junctions.

Bifluxon: Fluxon-Parity-Protected Superconducting Qubit

  1. Konstantin Kalashnikov,
  2. Wen Ting Hsieh,
  3. Wenyuan Zhang,
  4. Wen-Sen Lu,
  5. Plamen Kamenov,
  6. Agustin Di Paolo,
  7. Alexandre Blais,
  8. Michael E. Gershenson,
  9. and Matthew Bell
We have developed and characterized a symmetry-protected superconducting qubit that offers simultaneous exponential suppression of energy decay from charge and flux noise, and dephasing
from flux noise. The qubit consists of a Cooper-pair box (CPB) shunted by a superinductor, thus forming a superconducting loop. Provided the offset charge on the CPB island is an odd number of electrons, the qubit potential corresponds to that of a cosϕ/2 Josephson element, preserving the parity of fluxons in the loop via Aharonov-Casher interference. In this regime, the logical-state wavefunctions reside in disjoint regions of phase space, thereby ensuring the protection against energy decay. By switching the protection on, we observed a ten-fold increase of the decay time, reaching up to 100μs. Though the qubit is sensitive to charge noise, the sensitivity is much reduced in comparison with the charge qubit, and the charge-noise-induced dephasing time of the current device exceeds 1μs. Implementation of the full dephasing protection can be achieved in the next-generation devices by combining several cosϕ/2 Josephson elements in a small array.