We demonstrate a qubit-readout architecture where the dispersive coupling is entirely mediated by a kinetic inductance. This allows us to engineer the dispersive shift of the readoutresonator independent of the qubit and resonator capacitances. We validate the pure kinetic coupling concept and demonstrate various generalized flux qubit regimes from plasmon to fluxon, with dispersive shifts ranging from 60 kHz to 2 MHz at the half-flux quantum sweet spot. We achieve readout performances comparable to conventional architectures with quantum state preparation fidelities of 99.7 % and 92.7 % for the ground and excited states, respectively, and below 0.1 % leakage to non-computational states.
An accurate understanding of the Josephson effect is the keystone of quantum information processing with superconducting hardware. Here we show that the celebrated sinφ current-phaserelation (CφR) of Josephson junctions (JJs) fails to fully describe the energy spectra of transmon artificial atoms across various samples and laboratories. While the microscopic theory of JJs contains higher harmonics in the CφR, these have generally been assumed to give insignificant corrections for tunnel JJs, due to the low transparency of the conduction channels. However, this assumption might not be justified given the disordered nature of the commonly used AlOx tunnel barriers. Indeed, a mesoscopic model of tunneling through an inhomogeneous AlOx barrier predicts contributions from higher Josephson harmonics of several %. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The measurement of Josephson harmonics in the CφR of standard tunnel junctions prompts a reevaluation of current models for superconducting hardware and it offers a highly sensitive probe towards optimizing tunnel barrier uniformity.
The innate complexity of solid state physics exposes superconducting quantum circuits to interactions with uncontrolled degrees of freedom degrading their coherence. By using a simplestabilization sequence we show that a superconducting fluxonium qubit is coupled to a two-level system (TLS) environment of unknown origin, with a relatively long energy relaxation time exceeding 50ms. Implementing a quantum Szilard engine with an active feedback control loop allows us to decide whether the qubit heats or cools its TLS environment. The TLSs can be cooled down resulting in a four times lower qubit population, or they can be heated to manifest themselves as a negative temperature environment corresponding to a qubit population of ∼80%. We show that the TLSs and the qubit are each other’s dominant loss mechanism and that the qubit relaxation is independent of the TLS populations. Understanding and mitigating TLS environments is therefore not only crucial to improve qubit lifetimes but also to avoid non-Markovian qubit dynamics.
We demonstrate flux-bias locking and operation of a gradiometric fluxonium artificial atom using two symmetric granular aluminum (grAl) loops to implement the superinductor. The gradiometricfluxonium shows two orders of magnitude suppression of sensitivity to homogeneous magnetic fields, which can be an asset for hybrid quantum systems requiring strong magnetic field biasing. By cooling down the device in an external magnetic field while crossing the metal-to-superconductor transition, the gradiometric fluxonium can be locked either at 0 or Φ0/2 effective flux bias, corresponding to an even or odd number of trapped fluxons, respectively. At mK temperatures, the fluxon parity prepared during initialization survives to magnetic field bias exceeding 100Φ0. However, even for states biased in the vicinity of 1Φ0, we observe unexpectedly short fluxon lifetimes of a few hours, which cannot be explained by thermal or quantum phase slips. When operating in a deep-underground cryostat of the Gran Sasso laboratory, the fluxon lifetimes increase to days, indicating that ionizing events activate phase slips in the grAl superinductor.