The majority of quantum information tasks require error-corrected logical qubits whose coherence times are vastly longer than that of currently available physical qubits. Among themany quantum error correction codes, bosonic codes are particularly attractive as they make use of a single quantum harmonic oscillator to encode a correctable qubit in a hardware-efficient manner. One such encoding, based on grid states of an oscillator, has the potential to protect a logical qubit against all major physical noise processes. By stroboscopically modulating the interaction of a superconducting microwave cavity with an ancillary transmon, we have successfully prepared and permanently stabilized these grid states. The lifetimes of the three Bloch vector components of the encoded qubit are enhanced by the application of this protocol, and agree with a theoretical estimate based on the measured imperfections of the experiment.
Fault tolerant quantum information processing requires specific nonlinear interactions acting within the Hilbert space of the physical system that implements a logical qubit. The requiredorder of nonlinearity is often not directly available in the natural interactions of the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearities by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transitions. In particular, we demonstrate a Raman-assisted transformation of four photons of a high-Q superconducting cavity into two excitations of a superconducting transmon mode and vice versa. The resulting six-quanta process is obtained by cascading two fourth-order nonlinear processes through a virtual state. This process is a key step towards hardware efficient quantum error correction using Schrödinger cat-states.
A quantum system driven by a weak deterministic force while under strong continuous energy measurement exhibits quantum jumps between its energy levels. This celebrated phenomenon isemblematic of the special nature of randomness in quantum physics. The times at which the jumps occur are reputed to be fundamentally unpredictable. However, certain classical phenomena, like tsunamis, while unpredictable in the long term, may possess a degree of predictability in the short term, and in some cases it may be possible to prevent a disaster by detecting an advance warning signal. Can there be, despite the indeterminism of quantum physics, a possibility to know if a quantum jump is about to occur or not? In this paper, we answer this question affirmatively by experimentally demonstrating that the completed jump from the ground to an excited state of a superconducting artificial atom can be tracked, as it follows its predictable „flight,“ by monitoring the population of an auxiliary level coupled to the ground state. Furthermore, we show that the completed jump is continuous, deterministic, and coherent. Exploiting this coherence, we catch and reverse a quantum jump mid-flight, thus preventing its completion. This real-time intervention is based on a particular lull period in the population of the auxiliary level, which serves as our advance warning signal. Our results, which agree with theoretical predictions essentially without adjustable parameters, support the modern quantum trajectory theory and provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as early detection of error syndromes.
Quantum error correction can allow quantum computers to operate despite the presence of noise and imperfections. A critical component of any error correcting scheme is the mapping oferror syndromes onto an ancillary measurement system. However, errors occurring in the ancilla can propagate onto the logical qubit, and irreversibly corrupt the encoded information. Here, we demonstrate a fault-tolerant syndrome measurement scheme that dramatically suppresses forward propagation of ancilla errors. We achieve an eightfold reduction of the logical error probability per measurement, while maintaining the syndrome assignment fidelity. We use the same method to prevent the propagation of thermal ancilla excitations, increasing the logical qubit dephasing time by more than an order of magnitude. Our approach is hardware-efficient, as it uses a single multilevel transmon ancilla and a cavity-encoded logical qubit, whose interaction is engineered in situ using an off-resonant sideband drive. These results demonstrate that hardware-efficient approaches which exploit system-specific error models can yield practical advances towards fault-tolerant quantum computation.
Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entanglinggates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wavepacket. We achieve a Bell state fidelity of 73 %, well explained by losses in the transmission line and decoherence of each qubit.
Atomic systems display a rich variety of quantum dynamics due to the different possible symmetries obeyed by the atoms. These symmetries result in selection rules that have been essentialfor the quantum control of atomic systems. Superconducting artificial atoms are mainly governed by parity symmetry. Its corresponding selection rule limits the types of quantum systems that can be built using electromagnetic circuits at their optimal coherence operation points („sweet spots“). Here, we use third-order nonlinear coupling between the artificial atom and its readout resonator to drive transitions forbidden by the parity selection rule for linear coupling to microwave radiation. A Lambda-type system emerges from these newly accessible transitions, implemented here in the fluxonium artificial atom coupled to its „antenna“ resonator. We demonstrate coherent manipulation of the fluxonium artificial atom at its sweet spot by stimulated Raman transitions. This type of transition enables the creation of new quantum operations, such as the control and readout of physically protected artificial atoms.
The quantum Zeno effect (QZE) is the apparent freezing of a quantum system in one state under the influence of a continuous observation. It has been further generalized to the stabilizationof a manifold spanned by multiple quantum states. In that case, motion inside the manifold can subsist and can even be driven by the combination of a dissipative stabilization and an external force. A superconducting microwave cavity that exchanges pairs of photons with its environments constitutes an example of a system which displays a stabilized manifold spanned by Schr\“odinger cat states. For this driven-dissipative system, the quantum Zeno stabilization transforms a simple linear drive into photon number parity oscillations within the stable cat state manifold. Without this stabilization, the linear drive would trivially displace the oscillator state and push it outside of the manifold. However, the observation of this effect is experimentally challenging. On one hand, the adiabaticity condition requires the oscillations to be slow compared to the manifold stabilization rate. On the other hand, the oscillations have to be fast compared with the coherence timescales within the stabilized manifold. Here, we implement the stabilization of a manifold spanned by Schr\“odinger cat states at a rate that exceeds the main source of decoherence by two orders of magnitude, and we show Zeno-driven coherent oscillations within this manifold. While related driven manifold dynamics have been proposed and observed, the non-linear dissipation specific to our experiment adds a crucial element: any drift out of the cat state manifold is projected back into it. The coherent oscillations of parity observed in this work are analogous to the Rabi rotation of a qubit protected against phase-flips and are likely to become part of the toolbox in the construction of a fault-tolerant logical qubit.