Quantum-limited microwave parametric amplifiers are genuine key pillars for rising quantum technologies and in general for applications that rely on the successful readout of weak microwavesignals by adding only the minimum amount of noise allowed by quantum mechanics. In this perspective, after providing a brief overview on the different families of parametric microwave amplifiers, we focus on traveling wave parametric amplifiers (TWPAs), underlining the key achievements of the last years and the present open challenges. We discuss also possible new research directions beyond amplification such as exploring these devices as a platform for multi-mode entanglement generation and for the development of single photon detectors.
Traveling wave parametric amplification in a nonlinear medium provides broadband quantum-noise limited gain and is a remarkable resource for the detection of electromagnetic radiation.This nonlinearity is at the same time the key to the amplification phenomenon but also the cause of a fundamental limitation: poor phase matching between the signal and the pump. Here we solve this issue with a new phase matching mechanism based on the sign reversal of the Kerr nonlinearity. We present a novel traveling wave parametric amplifier composed of a chain of superconducting nonlinear asymmetric inductive elements (SNAILs) which allows this sign reversal when biased with the proper magnetic flux. Compared to previous state of the art phase matching approaches, this reversed Kerr phase matching mechanism avoids the presence of gaps in transmission, reduces gain ripples, and allows in situ tunability of the amplification band over an unprecedented wide range. Besides such notable advancements in the amplification performance, with direct applications to superconducting quantum computing, the in-situ tunability of the nonlinearity in traveling wave structures, with no counterpart in optics to the best of our knowledge, opens exciting experimental possibilities in the general framework of microwave quantum optics and single-photon detection.
Superconducting circuits are currently developed as a versatile platform for the exploration of many-body physics, both at the analog and digital levels. Their building blocks are oftenidealized as two-level qubits, drawing powerful analogies to quantum spin models. For a charge qubit that is capacitively coupled to a transmission line, this analogy leads to the celebrated spin-boson description of quantum dissipation. We put here into evidence a failure of the two-level paradigm for realistic superconducting devices, due to electrostatic constraints which limit the maximum strength of dissipation. These prevent the occurence of the spin-boson quantum phase transition for transmons, even up to relatively large non-linearities. A different picture for the many-body ground state describing strongly dissipative transmons is proposed, showing unusual zero point fluctuations.
Reading out the state of superconducting artificial atoms typically relies on dispersive coupling to a readout resonator. For a given system noise temperature, increasing the circulatingphoton number n¯ in the resonator enables a shorter measurement time and is therefore expected to reduce readout errors caused by spontaneous atom transitions. However, increasing n¯ is generally observed to also increase these transition rates. Here we present a fluxonium artificial atom in which we measure an overall flat dependence of the transition rates between its first two states as a function of n¯, up to n¯≈200. Despite the fact that we observe the expected decrease of the dispersive shift with increasing readout power, the signal-to-noise ratio continuously improves with increasing n¯. Even without the use of a parametric amplifier, at n¯=74, we measure fidelities of 99% and 93% for feedback-assisted ground and excited state preparation, respectively.
We developed a versatile integrated control and readout instrument for experiments with superconducting quantum bits (qubits), based on a field-programmable gate array (FPGA) platform.Using this platform, we perform measurement-based, closed-loop feedback operations with 428ns platform latency. The feedback capability is instrumental in realizing active reset initialization of the qubit into the ground state in a time much shorter than its energy relaxation time T1. We show experimental results demonstrating reset of a fluxonium qubit with 99.4% fidelity, using a readout-and-drive pulse sequence approximately 1.5μs long. Compared to passive ground state initialization through thermalization, with the time constant given by T1= 80μs, the use of the FPGA-based platform allows us to improve both the fidelity and the time of the qubit initialization by an order of magnitude.
Electromagnetic fields possess zero point fluctuations (ZPF) which lead to observable effects such as the Lamb shift and the Casimir effect. In the traditional quantum optics domain,these corrections remain perturbative due to the smallness of the fine structure constant. To provide a direct observation of non-perturbative effects driven by ZPF in an open quantum system we wire a highly non-linear Josephson junction to a high impedance transmission line, allowing large phase fluctuations across the junction. Consequently, the resonance of the former acquires a relative frequency shift that is orders of magnitude larger than for natural atoms. Detailed modelling confirms that this renormalization is non-linear and quantum. Remarkably, the junction transfers its non-linearity to about 30 environmental modes, a striking back-action effect that transcends the standard Caldeira-Leggett paradigm. This work opens many exciting prospects for longstanding quests such as the tailoring of many-body Hamiltonians in the strongly non-linear regime, the observation of Bloch oscillations, or the development of high-impedance qubits.
Determining the state of a qubit on a timescale much shorter than its relaxation time is an essential requirement for quantum information processing. With the aid of a new type of non-degenerateparametric amplifier, we demonstrate the continuous detection of quantum jumps of a transmon qubit with 90% fidelity in state discrimination. Entirely fabricated with standard two-step optical lithography techniques, this type of parametric amplifier consists of a dispersion engineered Josephson junction (JJ) array. By using long arrays, containing 103 JJs, we can obtain amplification at multiple eigenmodes with frequencies below 10 GHz, which is the typical range for qubit readout. Moreover, by introducing a moderate flux tunability of each mode, employing superconducting quantum interference device (SQUID) junctions, a single amplifier device could potentially cover the entire frequency band between 1 and 10 GHz.
We report on the fabrication and characterization of 50 Ohms, flux-tunable, low-loss, SQUID-based transmission lines. The fabrication process relies on the deposition of a thin dielectriclayer (few tens of nanometers) via Atomic Layer Deposition (ALD) on top of a SQUID array, the whole structure is then covered by a non-superconducting metallic top ground plane. We present experimental results from five different samples. We systematically characterize their microscopic parameters by measuring the propagating phase in these structures. We also investigate losses and discriminate conductor from dielectric losses. This fabrication method offers several advantages. First, the SQUID array fabrication does not rely on a Niobium tri-layer process but on a simpler double angle evaporation technique. Second, ALD provides high quality dielectric leading to low-loss devices. Further, the SQUID array fabrication is based on a standard, all-aluminum process, allowing direct integration with superconducting qubits. Moreover, our devices are in-situ flux tunable, allowing mitigation of incertitude inherent to any fabrication process. Finally, the unit cell being a single SQUID (no extra ground capacitance is needed), it is straightforward to modulate the size of the unit cell periodically, allowing band-engineering. This fabrication process can be directly applied to traveling wave parametric amplifiers.
An amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid state quantum technologiessuch as high fidelity qubit readout or high sensitivity electron spin resonance for example. Here we introduce a new Traveling Wave Parametric Amplifier based on Superconducting QUantum Interference Devices. It displays a 3 GHz bandwidth, a -102 dBm 1-dB compression point and added noise near the quantum limit. Compared to previous state-of-the-art, it is an order of magnitude more compact, its characteristic impedance is in-situ tunable and its fabrication process requires only two lithography steps. The key is the engineering of a gap in the dispersion relation of the transmission line. This is obtained using a periodic modulation of the SQUID size, similarly to what is done with photonic crystals. Moreover, we provide a new theoretical treatment to describe the non-trivial interplay between non-linearity and such periodicity. Our approach provides a path to co-integration with other quantum devices such as qubits given the low footprint and easy fabrication of our amplifier.
We report on the implementation and detailed modelling of a Josephson Parametric Amplifier (JPA) made from an array of eighty Superconducting QUantum Interference Devices (SQUIDs),forming a non-linear quarter-wave resonator. This device was fabricated using a very simple single step fabrication process. It shows a large bandwidth (45 MHz), an operating frequency tunable between 5.9 GHz and 6.8 GHz and a large input saturation power (-117 dBm) when biased to obtain 20 dB of gain. Despite the length of the SQUID array being comparable to the wavelength, we present a model based on an effective non-linear LC series resonator that quantitatively describes these figures of merit without fitting parameters. Our work illustrates the advantage of using array-based JPA since a single-SQUID device showing the same bandwidth and resonant frequency would display a saturation power 15 dB lower.