element in circuit quantum electrodynamics (cQED) architectures. In particular, we use an asymmetric SQUID as an SD controlled with a flux bias. We spectroscopically characterize SD and show that flux bias acts cooperatively with the nonlinear diode response to induce direction-dependent resonance shifts in the transmission spectrum. We use the SD as an elementary component to realize coherent nonreciprocal qubit-qubit coupling. With a minimal two qubit system, we demonstrate a nonreciprocal half-iSWAP gate with tunable Bell-state generation, thereby showcasing the potential of intrinsic nonreciprocity as a tool in coherent control in quantum technologies. Our work enables high-fidelity signal routing and entanglement generation in all-to-all connected microwave quantum networks, where nonreciprocity is embedded at the device level.
Nonreciprocal quantum information processing with superconducting diodes in circuit quantum electrodynamics
Introducing new components and functionalities into quantum devices is critical in advancing state-of-the-art hardware. Here, we propose superconducting diodes (SDs) as a coherent nonreciprocal