from aluminum thin films on silicon. The treatment, performed as a final processing step prior to device packaging, starts by conformally removing the native metal oxide and fabrication residues from the exposed surfaces through ALE before \textit{in situ} encapsulating the metal surfaces with a thin dielectric layer using ALD. We measure a two-fold reduction in loss attributed to two-level system (TLS) absorption in treated aluminum-based resonators and planar transmon qubits. Treated transmons with compact capacitor plates and gaps achieve median Q and T1 values of 3.69±0.42×106 and 196±22~μs, respectively. These improvements were found to be sustained over several months. We discuss how the combination of ALE and ALD reverses fabrication-induced surface damages to significantly and durably improve device performance via a reduction of the TLS defect density in the capacitive elements.
Improving the lifetime of aluminum-based superconducting qubits through atomic layer etching and deposition
We present a dry surface treatment combining atomic layer etching and deposition (ALE and ALD) to mitigate dielectric loss in fully fabricated superconducting quantum devices formed