Enhancing dissipative cat qubit protection by squeezing

  1. Rémi Rousseau,
  2. Diego Ruiz,
  3. Emanuele Albertinale,
  4. Pol d'Avezac,
  5. Danielius Banys,
  6. Ugo Blandin,
  7. Nicolas Bourdaud,
  8. Giulio Campanaro,
  9. Gil Cardoso,
  10. Nathanael Cottet,
  11. Charlotte Cullip,
  12. Samuel Deléglise,
  13. Louise Devanz,
  14. Adam Devulder,
  15. Antoine Essig,
  16. Pierre Février,
  17. Adrien Gicquel,
  18. Élie Gouzien,
  19. Antoine Gras,
  20. Jérémie Guillaud,
  21. Efe Gümüş,
  22. Mattis Hallén,
  23. Anissa Jacob,
  24. Paul Magnard,
  25. Antoine Marquet,
  26. Salim Miklass,
  27. Théau Peronnin,
  28. Stéphane Polis,
  29. Felix Rautschke,
  30. Ulysse Réglade,
  31. Julien Roul,
  32. Jeremy Stevens,
  33. Jeanne Solard,
  34. Alexandre Thomas,
  35. Jean-Loup Ville,
  36. Pierre Wan-Fat,
  37. Raphaël Lescanne,
  38. Zaki Leghtas,
  39. Joachim Cohen,
  40. Sébastien Jezouin,
  41. and Anil Murani
Dissipative cat-qubits are a promising architecture for quantum processors due to their built-in quantum error correction. By leveraging two-photon stabilization, they achieve an exponentially
suppressed bit-flip error rate as the distance in phase-space between their basis states increases, incurring only a linear increase in phase-flip rate. This property substantially reduces the number of qubits required for fault-tolerant quantum computation. Here, we implement a squeezing deformation of the cat qubit basis states, further extending the bit-flip time while minimally affecting the phase-flip rate. We demonstrate a steep reduction in the bit-flip error rate with increasing mean photon number, characterized by a scaling exponent γ=4.3, rising by a factor of 74 per added photon. Specifically, we measure bit-flip times of 22 seconds for a phase-flip time of 1.3 μs in a squeezed cat qubit with an average photon number n¯=4.1, a 160-fold improvement in bit-flip time compared to a standard cat. Moreover, we demonstrate a two-fold reduction in Z-gate infidelity, with an estimated phase-flip probability of ϵX=0.085 and a bit-flip probability of ϵZ=2.65⋅10−9 which confirms the gate bias-preserving property. This simple yet effective technique enhances cat qubit performances without requiring design modification, moving multi-cat architectures closer to fault-tolerant quantum computation.

Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s

  1. Antoine Marquet,
  2. Antoine Essig,
  3. Joachim Cohen,
  4. Nathanaël Cottet,
  5. Anil Murani,
  6. Emanuele Abertinale,
  7. Simon Dupouy,
  8. Audrey Bienfait,
  9. Théau Peronnin,
  10. Sébastien Jezouin,
  11. Raphaël Lescanne,
  12. and Benjamin Huard
Cat qubits, for which logical |0⟩ and |1⟩ are coherent states |±α⟩ of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantage
so that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number |α|2. Large two-photon dissipation rate κ2 ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate κ2/2π≈2 MHz. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between |α⟩ and |−α⟩ can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active.

Energetics of a Single Qubit Gate

  1. Jeremy Stevens,
  2. Daniel Szombati,
  3. Maria Maffei,
  4. Cyril Elouard,
  5. Réouven Assouly,
  6. Nathanaël Cottet,
  7. Rémy Dassonneville,
  8. Quentin Ficheux,
  9. Stefan Zeppetzauer,
  10. Audrey Bienfait,
  11. Andrew N. Jordan,
  12. Alexia Auffèves,
  13. and Benjamin Huard
Qubits are physical, a quantum gate thus not only acts on the information carried by the qubit but also on its energy. What is then the corresponding flow of energy between the qubit
and the controller that implements the gate? Here we exploit a superconducting platform to answer this question in the case of a quantum gate realized by a resonant drive field. During the gate, the superconducting qubit becomes entangled with the microwave drive pulse so that there is a quantum superposition between energy flows. We measure the energy change in the drive field conditioned on the outcome of a projective qubit measurement. We demonstrate that the drive’s energy change associated with the measurement backaction can exceed by far the energy that can be extracted by the qubit. This can be understood by considering the qubit as a weak measurement apparatus of the driving field.

Electron shelving of a superconducting artificial atom

  1. Nathanaël Cottet,
  2. Haonan Xiong,
  3. Long B. Nguyen,
  4. Yen-Hsiang Lin,
  5. and Vladimir E. Manucharyan
Interfacing stationary qubits with propagating photons is a fundamental problem in quantum technology. Cavity quantum electrodynamics (CQED) invokes a mediator degree of freedom in
the form of a far-detuned cavity mode, the adaptation of which to superconducting circuits (cQED) proved remarkably fruitful. The cavity both blocks the qubit emission and it enables a dispersive readout of the qubit state. Yet, a more direct (cavityless) interface is possible with atomic clocks, in which an orbital cycling transition can scatter photons depending on the state of a hyperfine or quadrupole qubit transition. Originally termed „electron shelving“, such a conditional fluorescence phenomenon is the cornerstone of many quantum information platforms, including trapped ions, solid state defects, and semiconductor quantum dots. Here we apply the shelving idea to circuit atoms and demonstrate a conditional fluorescence readout of fluxonium qubit placed inside a matched one-dimensional waveguide. Cycling the non-computational transition between ground and third excited states produces a microwave photon every 91 ns conditioned on the qubit ground state, while the qubit coherence time exceeds 50 us. The readout has a built-in quantum non-demolition property, allowing over 100 fluorescence cycles in agreement with a four-level optical pumping model. Our result introduces a resource-efficient alternative to cQED. It also adds a state-of-the-art quantum memory to the growing toolbox of waveguide QED.

Multiplexed photon number measurement

  1. Antoine Essig,
  2. Quentin Ficheux,
  3. Théau Peronnin,
  4. Nathanaël Cottet,
  5. Raphaël Lescanne,
  6. Alain Sarlette,
  7. Pierre Rouchon,
  8. Zaki Leghtas,
  9. and Benjamin Huard
The evolution of quantum systems under measurement is a central aspect of quantum mechanics. When a two level system — a qubit — is used as a probe of a larger system, it
naturally leads to answering a single yes-no question about the system state followed by its corresponding quantum collapse. Here, we report an experiment where a single superconducting qubit is counter-intuitively able to answer not a single but nine yes-no questions about the number of photons in a microwave resonator at the same time. The key ingredients are twofold. First, we exploit the fact that observing the color of a qubit carries additional information to the conventional readout of its state. The qubit-system interaction is hence designed so that the qubit color encodes the number of photons in the resonator. Secondly, we multiplex the qubit color observation by recording how the qubit reflects a frequency comb. Interestingly the amount of extracted information reaches a maximum at a finite drive amplitude of the comb. We evidence it by direct Wigner tomography of the quantum state of the resonator. Our experiment unleashes the full potential of quantum meters by bringing the measurement process in the frequency domain.