We report the preparation and verification of a genuine 12-qubit entanglement in a superconducting processor. The processor that we designed and fabricated has qubits lying on a 1Dchain with relaxation times ranging from 29.6 to 54.6 μs. The fidelity of the 12-qubit entanglement was measured to be above 0.5544±0.0025, exceeding the genuine multipartite entanglement threshold by 21 standard deviations. Our entangling circuit to generate linear cluster states is depth-invariant in the number of qubits and uses single- and double-qubit gates instead of collective interactions. Our results are a substantial step towards large-scale random circuit sampling and scalable measurement-based quantum computing.
By driving a 3D transmon with microwave fields, we generate an effective avoided energy-level crossing. Then we chirp microwave frequency, which is equivalent to driving the systemthrough the avoided energy-level crossing by sweeping the avoided crossing. A double-passage chirp produces Landau-Zener-St\“uckelberg-Majorana interference that agree well with the numerical results. Our method is fully applicable to other quantum systems that contain no intrinsic avoided level crossing, providing an alternative approach for quantum control and quantum simulation.
We present a direct experimental observation of the correspondence between Landau-Zener transition and Kibble-Zurek mechanism with a superconducting qubit system. We develop a time-resolvedapproach to study quantum dynamics of the Landau-Zener transition. By using this method, we observe the key features of the correspondence between Landau-Zener transition and Kibble-Zurek mechanism, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region. Remarkably, the scaling behavior of the population in the excited state, an analogical phenomenon originally predicted in Kibble-Zurek mechanism, is also observed in the Landau-Zener transition.