Genuine 12-qubit entanglement on a superconducting quantum processor

  1. Ming Gong,
  2. Ming-Cheng Chen,
  3. Yarui Zheng,
  4. Shiyu Wang,
  5. Chen Zha,
  6. Hui Deng,
  7. Zhiguang Yan,
  8. Hao Rong,
  9. Yulin Wu,
  10. Shaowei Li,
  11. Fusheng Chen,
  12. Youwei Zhao,
  13. Futian Liang,
  14. Jin Lin,
  15. Yu Xu,
  16. Cheng Guo,
  17. Lihua Sun,
  18. Anthony D. Castellano,
  19. Haohua Wang,
  20. Chengzhi Peng,
  21. Chao-Yang Lu,
  22. Xiaobo Zhu,
  23. and Jian-Wei Pan
We report the preparation and verification of a genuine 12-qubit entanglement in a superconducting processor. The processor that we designed and fabricated has qubits lying on a 1D
chain with relaxation times ranging from 29.6 to 54.6 μs. The fidelity of the 12-qubit entanglement was measured to be above 0.5544±0.0025, exceeding the genuine multipartite entanglement threshold by 21 standard deviations. Our entangling circuit to generate linear cluster states is depth-invariant in the number of qubits and uses single- and double-qubit gates instead of collective interactions. Our results are a substantial step towards large-scale random circuit sampling and scalable measurement-based quantum computing.

Landau-Zener-Stuckelberg-Majorana interference in a 3D transmon driven by a chirped microwave

  1. Ming Gong,
  2. Yu Zhou,
  3. Dong Lan,
  4. Yunyi Fan,
  5. Jiazheng Pan,
  6. Haifeng Yu,
  7. Jian Chen,
  8. Guozhu Sun,
  9. Yang Yu,
  10. Siyuan Han,
  11. and Peiheng Wu
By driving a 3D transmon with microwave fields, we generate an effective avoided energy-level crossing. Then we chirp microwave frequency, which is equivalent to driving the system
through the avoided energy-level crossing by sweeping the avoided crossing. A double-passage chirp produces Landau-Zener-St\“uckelberg-Majorana interference that agree well with the numerical results. Our method is fully applicable to other quantum systems that contain no intrinsic avoided level crossing, providing an alternative approach for quantum control and quantum simulation.

Observation of the correspondence between Landau-Zener transition and Kibble-Zurek mechanism with a superconducting qubit system

  1. Ming Gong,
  2. Xueda Wen,
  3. Guozhu Sun,
  4. Dan-Wei Zhang,
  5. Yang Yu,
  6. Shi-Liang Zhu,
  7. and Siyuan Han
We present a direct experimental observation of the correspondence between Landau-Zener transition and Kibble-Zurek mechanism with a superconducting qubit system. We develop a time-resolved
approach to study quantum dynamics of the Landau-Zener transition. By using this method, we observe the key features of the correspondence between Landau-Zener transition and Kibble-Zurek mechanism, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region. Remarkably, the scaling behavior of the population in the excited state, an analogical phenomenon originally predicted in Kibble-Zurek mechanism, is also observed in the Landau-Zener transition.