TLS Dynamics in a Superconducting Qubit Due to Background Ionizing Radiation

  1. Ted Thorbeck,
  2. Andrew Eddins,
  3. Isaac Lauer,
  4. Douglas T. McClure,
  5. and Malcolm Carroll
Superconducting qubit lifetimes must be both long and stable to provide an adequate foundation for quantum computing. This stability is imperiled by two-level systems (TLSs), currently
a dominant loss mechanism, which exhibit slow spectral dynamics that destabilize qubit lifetimes on hour timescales. Stability is also threatened at millisecond timescales, where ionizing radiation has recently been found to cause bursts of correlated multi-qubit decays, complicating quantum error correction. Here we study both ionizing radiation and TLS dynamics on a 27-qubit processor, repurposing the standard transmon qubits as sensors of both radiation impacts and TLS dynamics. Unlike prior literature, we observe resilience of the qubit lifetimes to the transient quasiparticles generated by the impact of radiation. However, we also observe a new interaction between these two processes, „TLS scrambling,“ in which a radiation impact causes multiple TLSs to jump in frequency, which we suggest is due to the same charge rearrangement sensed by qubits near a radiation impact. As TLS scrambling brings TLSs out of or in to resonance with the qubit, the lifetime of the qubit increases or decreases. Our findings thus identify radiation as a new contribution to fluctuations in qubit lifetimes, with implications for efforts to characterize and improve device stability

Dynamics of superconducting qubit relaxation times

  1. Malcolm Carroll,
  2. Sami Rosenblatt,
  3. Petar Jurcevic,
  4. Isaac Lauer,
  5. and Abhinav Kandala
Superconducting qubits are a leading candidate for quantum computing but display temporal fluctuations in their energy relaxation times T1. This introduces instabilities in multi-qubit
device performance. Furthermore, autocorrelation in these time fluctuations introduces challenges for obtaining representative measures of T1 for process optimization and device screening. These T1 fluctuations are often attributed to time varying coupling of the qubit to defects, putative two level systems (TLSs). In this work, we develop a technique to probe the spectral and temporal dynamics of T1 in single junction transmons by repeated T1 measurements in the frequency vicinity of the bare qubit transition, via the AC-Stark effect. Across 10 qubits, we observe strong correlations between the mean T1 averaged over approximately nine months and a snapshot of an equally weighted T1 average over the Stark shifted frequency range. These observations are suggestive of an ergodic-like spectral diffusion of TLSs dominating T1, and offer a promising path to more rapid T1 characterization for device screening and process optimization.