Quantum error correction with erasure qubits promises significant advantages over standard error correction due to favorable thresholds for erasure errors. To realize this advantagein practice requires a qubit for which nearly all errors are such erasure errors, and the ability to check for erasure errors without dephasing the qubit. We experimentally demonstrate that a „dual-rail qubit“ consisting of a pair of resonantly-coupled transmons can form a highly coherent erasure qubit, where the erasure error rate is given by the transmon T1 but for which residual dephasing is strongly suppressed, leading to millisecond-scale coherence within the qubit subspace. We show that single-qubit gates are limited primarily by erasure errors, with erasure probability perasure=2.19(2)×10−3 per gate while the residual errors are ∼40 times lower. We further demonstrate mid-circuit detection of erasure errors while introducing <0.1% dephasing error per check. Finally, we show that the suppression of transmon noise allows this dual-rail qubit to preserve high coherence over a broad tunable operating range, offering an improved capacity to avoid frequency collisions. This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.[/expand]
Bidirectional conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are employed at repeater stations to extend the reach of long-haulfiber optic communication systems and within data centers to exchange high-speed optical signals between computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors, a promising quantum computing hardware platform. Despite the prospects of quantum networking, maintaining the fragile quantum state in such a conversion process with superconducting qubits has remained elusive. Here we demonstrate the conversion of a microwave-frequency excitation of a superconducting transmon qubit into an optical photon. We achieve this using an intermediary nanomechanical resonator which converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction, and subsequently converts the phonon to an optical photon via radiation pressure. We demonstrate optical photon generation from the qubit with a signal-to-noise greater than unity by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fiber. With proposed improvements in the device and external measurement set-up, such quantum transducers may lead to practical devices capable of realizing new hybrid quantum networks, and ultimately, distributed quantum computers.
The embedding of tunable quantum emitters in a photonic bandgap structure enables the control of dissipative and dispersive interactions between emitters and their photonic bath. Operationin the transmission band, outside the gap, allows for studying waveguide quantum electrodynamics in the slow-light regime. Alternatively, tuning the emitter into the bandgap results in finite range emitter-emitter interactions via bound photonic states. Here we couple a transmon qubit to a superconducting metamaterial with a deep sub-wavelength lattice constant (λ/60). The metamaterial is formed by periodically loading a transmission line with compact, low loss, low disorder lumped element microwave resonators. We probe the coherent and dissipative dynamics of the system by measuring the Lamb shift and the change in the lifetime of the transmon qubit. Tuning the qubit frequency in the vicinity of a band-edge with a group index of ng=450, we observe an anomalous Lamb shift of 10 MHz accompanied by a 24-fold enhancement in the qubit lifetime. In addition, we demonstrate selective enhancement and inhibition of spontaneous emission of different transmon transitions, which provide simultaneous access to long-lived metastable qubit states and states strongly coupled to propagating waveguide modes.