Nonlinear response theory for lossy superconducting quantum circuits

  1. V. Vadimov,
  2. M. Xu,
  3. J. T. Stockburger,
  4. J. Ankerhold,
  5. and M. Möttönen
We introduce a numerically exact and yet computationally feasible nonlinear response theory developed for lossy superconducting quantum circuits based on a framework of quantum dissipation
in a minimally extended state space. Starting from the Feynman–Vernon path integral formalism for open quantum systems with the system degrees of freedom being the nonlinear elements of the circuit, we eliminate the temporally non-local influence functional of all linear elements by introducing auxiliary harmonic modes with complex-valued frequencies coupled to the non-linear degrees of freedom of the circuit. In our work, we propose a concept of time-averaged observables, inspired by experiment, and provide an explicit formula for producing their quasiprobability distribution. Furthermore, we systematically derive a weak-coupling approximation in the presence of a drive, and demonstrate the applicability of our formalism through a study on the dispersive readout of a superconducting qubit. The developed framework enables a comprehensive fully quantum-mechanical treatment of nonlinear quantum circuits coupled to their environment, without the limitations of typical approaches to weak dissipation, high temperature, and weak drive. Furthermore, we discuss the implications of our findings to the quantum measurement theory.

Secure quantum remote state preparation of squeezed microwave states

  1. S. Pogorzalek,
  2. K. G. Fedorov,
  3. M. Xu,
  4. A. Parra-Rodriguez,
  5. M. Sanz,
  6. M. Fischer,
  7. E. Xie,
  8. K. Inomata,
  9. Y. Nakamura,
  10. E. Solano,
  11. A. Marx,
  12. F. Deppe,
  13. and R. Gross
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular,
remote state preparation aims at the creation of a desired and known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.