Most microwave readout architectures in quantum computing or sensing rely on a semiconductor amplifier at 4 K, typically a high-electron mobility transistor (HEMT). Despite its remarkablenoise performance, a conventional HEMT dissipates several milliwatts of power, posing a practical challenge to scale up the number of qubits or sensors addressed in these architectures. As an alternative, we present an amplification chain consisting of a kinetic-inductance traveling-wave parametric amplifier (KI-TWPA) placed at 4 K, followed by a HEMT placed at 70 K, and demonstrate a chain-added noise TΣ=6.3±0.5 K between 3.5 and 5.5 GHz. While, in principle, any parametric amplifier can be quantum limited even at 4 K, in practice we find the KI-TWPA’s performance limited by the temperature of its inputs, and by an excess of noise Tex=1.9 K. The dissipation of the KI-TWPA’s rf pump constitutes the main power load at 4 K and is about one percent that of a HEMT. These combined noise and power dissipation values pave the way for the KI-TWPA’s use as a replacement for semiconductor amplifiers.
We present a superconducting microresonator thermometer based on two-level systems (TLS) that is drop-in compatible with cryogenic microwave systems. The operational temperature rangeis 50-1000~mK (which may be extended to 5~mK), and the sensitivity (50-75~μK/Hz−−−√) is relatively uniform across this range. The miniature footprint that conveniently attaches to the feedline of a cryogenic microwave device facilitates the measurement of on-chip device temperature and requires no additional thermometry wiring or readout electronics. We demonstrate the practical use of these TLS thermometers to investigate static and transient chip heating in a kinetic inductance traveling-wave parametric amplifier operated with a strong pump tone. TLS thermometry may find broad application in cryogenic microwave devices such as superconducting qubits and detectors.
We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot noisethermometer, approaches the quantum limit. Biased with a dc current, the KIT operates in a three-wave mixing fashion, thereby reducing by several orders of magnitude the power of the microwave pump tone compared to conventional four-wave mixing KIT devices. It is built in an artificial transmission line intrinsically matched to 50 Ohms, whose dispersion allows for a controlled amplification bandwidth. We experimentally measure 17.6+1.1−1.4 dB of gain across a 2 GHz bandwidth, with an input 1 dB compression power of -63 dBm within that bandwidth, in qualitative agreement with theory. Using the KIT as the first amplifier in an amplification chain, we measure a system-added noise of 0.61±0.08 K between 3.5 and 5.5 GHz, about one eighth the noise obtained when using only a representative classical amplifier. The KIT contribution to this added noise is estimated to be 0.2±0.1 K, consistent with the quantum limit on amplifier added noise. This device is therefore suitable to read large arrays of microwave kinetic inductance detectors or thousands of superconducting qubits.
A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how theJPA’s pump influences the phase-sensitive amplification and deamplification of a coherent tone’s amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that by operating the JPA with a pump power greater than the value that maximizes gain, the amplifier distortion is reduced and consequently squeezing is improved. Optimizing the JPA’s operation in this fashion, we directly observe 3.87±0.03 dB of vacuum squeezing.