Comparing and combining measurement-based and driven-dissipative entanglement stabilization

  1. Yehan Liu,
  2. Shyam Shankar,
  3. Nissim Ofek,
  4. Michael Hatridge,
  5. Anirudh Narla,
  6. Katrina Sliwa,
  7. Luigi Frunzio,
  8. Robert J. Schoelkopf,
  9. and Michel H. Devoret
We demonstrate and contrast two approaches to the stabilization of qubit entanglement by feedback. Our demonstration is built on a feedback platform consisting of two superconducting
qubits coupled to a cavity which are measured by a nearly-quantum-limited measurement chain and controlled by high-speed classical logic circuits. This platform is used to stabilize entanglement by two nominally distinct schemes: a „passive“ reservoir engineering method and an „active“ correction based on conditional parity measurements. In view of the instrumental roles that these two feedback paradigms play in quantum error-correction and quantum control, we directly compare them on the same experimental setup. Further, we show that a second layer of feedback can be added to each of these schemes, which heralds the presence of a high-fidelity entangled state in realtime. This „nested“ feedback brings about a marked entanglement fidelity improvement without sacrificing success probability.

A quantum memory with near-millisecond coherence in circuit QED

  1. Matthew Reagor,
  2. Wolfgang Pfaff,
  3. Christopher Axline,
  4. Reinier W. Heeres,
  5. Nissim Ofek,
  6. Katrina Sliwa,
  7. Eric Holland,
  8. Chen Wang,
  9. Jacob Blumoff,
  10. Kevin Chou,
  11. Michael J. Hatridge,
  12. Luigi Frunzio,
  13. Michel H. Devoret,
  14. Liang Jiang,
  15. and Robert J. Schoelkopf
Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent
quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.

Violating Bell’s inequality with an artificial atom and a cat state in a cavity

  1. Brian Vlastakis,
  2. Andrei Petrenko,
  3. Nissim Ofek,
  4. Luayn Sun,
  5. Zaki Leghtas,
  6. Katrina Sliwa,
  7. Yehan Liu,
  8. Michael Hatridge,
  9. Jacob Blumoff,
  10. Luigi Frunzio,
  11. Mazyar Mirrahimi,
  12. Liang Jiang,
  13. M. H. Devoret,
  14. and R. J. Schoelkopf
The `Schr“odinger’s cat‘ thought experiment highlights the counterintuitive facet of quantum theory that entanglement can exist between microscopic and macroscopic
systems, producing a superposition of distinguishable states like the fictitious cat that is both alive and dead. The hallmark of entanglement is the detection of strong correlations between systems, for example by the violation of Bell’s inequality. Using the CHSH variant of the Bell test, this violation has been observed with photons, atoms, solid state spins, and artificial atoms in superconducting circuits. For larger, more distinguishable states, the conflict between quantum predictions and our classical expectations is typically resolved due to the rapid onset of decoherence. To investigate this reconciliation, one can employ a superposition of coherent states in an oscillator, known as a cat state. In contrast to discrete systems, one can continuously vary the size of the prepared cat state and therefore its dependence on decoherence. Here we demonstrate and quantify entanglement between an artificial atom and a cat state in a cavity, which we call a `Bell-cat‘ state. We use a circuit QED architecture, high-fidelity measurements, and real-time feedback control to violate Bell’s inequality without post-selection or corrections for measurement inefficiencies. Furthermore, we investigate the influence of decoherence by continuously varying the size of created Bell-cat states and characterize the entangled system by joint Wigner tomography. These techniques provide a toolset for quantum information processing with entangled qubits and resonators. While recent results have demonstrated a high level of control of such systems, this experiment demonstrates that information can be extracted efficiently and with high fidelity, a crucial requirement for quantum computing with resonators.

Cavity State Manipulation Using Photon-Number Selective Phase Gates

  1. Reinier W. Heeres,
  2. Brian Vlastakis,
  3. Eric Holland,
  4. Stefan Krastanov,
  5. Victor V. Albert,
  6. Luigi Frunzio,
  7. Liang Jiang,
  8. and Robert J. Schoelkopf
The large available Hilbert space and high coherence of cavity resonators makes these systems an interesting resource for storing encoded quantum bits. To perform a quantum gate on
this encoded information, however, complex nonlinear operations must be applied to the many levels of the oscillator simultaneously. In this work, we introduce the Selective Number-dependent Arbitrary Phase (SNAP) gate, which imparts a different phase to each Fock state component using an off-resonantly coupled qubit. We show that the SNAP gate allows control over the quantum phases by correcting the unwanted phase evolution due to the Kerr effect. Furthermore, by combining the SNAP gate with oscillator displacements, we create a one-photon Fock state with high fidelity. Using just these two controls, one can construct arbitrary unitary operations, offering a scalable route to performing logical manipulations on oscillator-encoded qubits.

Confining the state of light to a quantum manifold by engineered two-photon loss

  1. Zaki Leghtas,
  2. Steven Touzard,
  3. Ioan M. Pop,
  4. Angela Kou,
  5. Brian Vlastakis,
  6. Andrei Petrenko,
  7. Katrina M. Sliwa,
  8. Anirudh Narla,
  9. Shyam Shankar,
  10. Michael J. Hatridge,
  11. Matthew Reagor,
  12. Luigi Frunzio,
  13. Robert J. Schoelkopf,
  14. Mazyar Mirrahimi,
  15. and Michel H. Devoret
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially
engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have experimentally confined the state of a harmonic oscillator to the quantum manifold spanned by two coherent states of opposite phases. In particular, we have observed a Schrodinger cat state spontaneously squeeze out of vacuum, before decaying into a classical mixture. This was accomplished by designing a superconducting microwave resonator whose coupling to a cold bath is dominated by photon pair exchange. This experiment opens new avenues in the fields of nonlinear quantum optics and quantum information, where systems with multi-dimensional steady state manifolds can be used as error corrected logical qubits.

Measurement and Control of Quasiparticle Dynamics in a Superconducting Qubit

  1. Chen Wang,
  2. Yvonne Y. Gao,
  3. Ioan M. Pop,
  4. Uri Vool,
  5. Chris Axline,
  6. Teresa Brecht,
  7. Reinier W. Heeres,
  8. Luigi Frunzio,
  9. Michel H. Devoret,
  10. Gianluigi Catelani,
  11. Leonid I. Glazman,
  12. and Robert J. Schoelkopf
Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been
taken to completely shield these circuits from external magnetic field to protect the integrity of superconductivity. Surprisingly, here we show vortices can dramatically improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we directly demonstrate the power-law decay characteristics of the canonical quasiparticle recombination process, and show quantization of quasiparticle trapping rate due to individual vortices. Each vortex in our aluminium film shows a quasiparticle „trapping power“ of 0.067±0.005 cm2/s, enough to dominate over the vanishingly weak recombination in a modern transmon qubit. These results highlight the prominent role of quasiparticle trapping in future development of quantum circuits, and provide a powerful characterization tool along the way.

Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations

  1. Uri Vool,
  2. Ioan M. Pop,
  3. Katrina Sliwa,
  4. Baleegh Abdo,
  5. Chen Wang,
  6. Teresa Brecht,
  7. Yvonne Y. Gao,
  8. Shyam Shankar,
  9. Michael Hatridge,
  10. Gianluigi Catelani,
  11. Mazyar Mirrahimi,
  12. Luigi Frunzio,
  13. Robert J. Schoelkopf,
  14. Leonid I. Glazman,
  15. and Michel H. Devoret
As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant
limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum non-demolition projective measurements within a time interval much shorter than T1, using a quantum limited amplifier (Josephson Parametric Converter). The quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in magnetic field.

Josephson directional amplifier for quantum measurement of superconducting circuits

  1. Baleegh Abdo,
  2. Katrina Sliwa,
  3. S. Shankar,
  4. Michael Hatridge,
  5. Luigi Frunzio,
  6. Robert Schoelkopf,
  7. and Michel Devoret
We have realized a microwave quantum-limited amplifier that is directional and can therefore function without the front circulator needed in many quantum measurements. The amplification
takes place in only one direction between the input and output ports. Directionality is achieved by multi-pump parametric amplification combined with wave interference. We have verified the device noise performances by using it to readout a superconducting qubit and observed quantum jumps. With an improved version of this device, qubit and preamplifer could be integrated on the same chip.

Directional amplification with a Josephson circuit

  1. Baleegh Abdo,
  2. Katrina Sliwa,
  3. Luigi Frunzio,
  4. and Michel Devoret
Non-reciprocal devices, which have different transmission coefficients for propagating waves in opposite directions, are crucial components in many low noise quantum measurements. In
most schemes, magneto-optical effects provide the necessary non-reciprocity. In contrast, the proof-of-principle device presented here, consists of two on-chip coupled Josephson parametric converters (JPCs), which achieves directionality by exploiting the non-reciprocal phase response of the JPC in the trans-gain mode. The non-reciprocity of the device is controlled in-situ by varying the amplitude and phase difference of two independent microwave pump tones feeding the system. At the desired working point and for a signal frequency of 8.453 GHz, the device achieves a forward power gain of 15 dB within a dynamical bandwidth of 9 MHz, a reverse gain of -6 dB and suppression of the reflected signal by 8 dB. We also find that the amplifier adds a noise equivalent to less than one and a half photons at the signal frequency (referred to the input). It can process up to 3 photons at the signal frequency per inverse dynamical bandwidth. With a directional amplifier operating along the principles of this device, qubit and readout preamplifier could be integrated on the same chip.

Full coherent frequency conversion between two microwave propagating modes

  1. Baleegh Abdo,
  2. Katrina Sliwa,
  3. Flavius Schackert,
  4. Nicolas Bergeal,
  5. Michael Hatridge,
  6. Luigi Frunzio,
  7. A. Douglas Stone,
  8. and Michel H. Devoret
We demonstrate full frequency conversion in the microwave domain using a Josephson three-wave mixing device pumped at the difference between the frequencies of its fundamental eigenmodes.
By measuring the signal output as a function of the intensity and phase of the three input signal, idler and pump tones, we show that the device functions as a controllable three-wave beam-splitter/combiner for propagating microwave modes, in accordance with theory. Losses at the full conversion point are found to be less than 10^-2. Potential applications of the device include quantum information transduction and realization of an ultra-sensitive interferometer with controllable feedback.