Quantum simulations of light-matter interactions in arbitrary coupling regimes

  1. L. Lamata
Light-matter interactions are an established field that is experiencing a renaissance in recent years due to the introduction of exotic coupling regimes. These include the ultrastrong

Parity-assisted generation of nonclassical states of light in circuit quantum electrodynamics

  1. F. A. Cárdenas-López,
  2. G. Romero,
  3. L. Lamata,
  4. E. Solano,
  5. and J. C. Retamal
We propose a method to generate nonclassical states of light in multimode microwave cavities. Our approach considers two-photon processes that take place in a system composed of two

One-way Quantum Computing in Superconducting Circuits

  1. F. Albarrán-Arriagada,
  2. G. Alvarado-Barrios,
  3. M. Sanz,
  4. G. Romero,
  5. L. Lamata,
  6. J. C. Retamal,
  7. and E. Solano
We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm

Spin-1 models in the ultrastrong coupling regime of circuit QED

  1. F. Albarrán-Arriagada,
  2. L. Lamata,
  3. E. Solano,
  4. G. Romero,
  5. and J. C. Retamal
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through

Quantum simulations with circuit quantum electrodynamics

  1. G. Romero,
  2. E. Solano,
  3. and L. Lamata
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols.

Quantum chemistry and charge transport in biomolecules with superconducting circuits

  1. L. García-Álvarez,
  2. U. Las Heras,
  3. A. Mezzacapo,
  4. M. Sanz,
  5. E. Solano,
  6. and L. Lamata
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with

Digitized adiabatic quantum computing with a superconducting circuit

  1. R. Barends,
  2. A. Shabani,
  3. L. Lamata,
  4. J. Kelly,
  5. A. Mezzacapo,
  6. U. Las Heras,
  7. R. Babbush,
  8. A. G. Fowler,
  9. B. Campbell,
  10. Yu Chen,
  11. Z. Chen,
  12. B. Chiaro,
  13. A. Dunsworth,
  14. E. Jeffrey,
  15. E. Lucero,
  16. A. Megrant,
  17. J. Y. Mutus,
  18. M. Neeley,
  19. C. Neill,
  20. P. J. J. O'Malley,
  21. C. Quintana,
  22. P. Roushan,
  23. D. Sank,
  24. A. Vainsencher,
  25. J. Wenner,
  26. T. C. White,
  27. E. Solano,
  28. H. Neven,
  29. and John M. Martinis
A major challenge in quantum computing is to solve general problems with limited physical hardware. Here, we implement digitized adiabatic quantum computing, combining the generality

Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits

  1. U. Las Heras,
  2. L. García-Álvarez,
  3. A. Mezzacapo,
  4. E. Solano,
  5. and L. Lamata
We propose the implementation of a digital quantum simulation of spin chains coupled to bosonic field modes in superconducting circuits. Gates with high fidelities allows one to simulate

Non-Abelian Lattice Gauge Theories in Superconducting Circuits

  1. A. Mezzacapo,
  2. E. Rico,
  3. C. Sabín,
  4. I. L. Egusquiza,
  5. L. Lamata,
  6. and E. Solano
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance

Relativistic Motion with Superconducting Qubits

  1. S. Felicetti,
  2. C. Sabín,
  3. I. Fuentes,
  4. L. Lamata,
  5. G. Romero,
  6. and E. Solano
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This