Detailed, interpretable characterization of mid-circuit measurement on a transmon qubit

  1. Piper C. Wysocki,
  2. Luke D Burkhart,
  3. Madeline H. Morocco,
  4. Corey I. Ostrove,
  5. Riley J. Murray,
  6. Tristan Brown,
  7. Jeffrey M. Gertler,
  8. David K. Kim,
  9. Nathan E. Miller,
  10. Bethany M. Niedzielski,
  11. Katrina M. Sliwa,
  12. Robin Blume-Kohout,
  13. Gabriel O. Samach,
  14. Mollie E. Schwartz,
  15. and Kenneth M. Rudinger
Mid-circuit measurements (MCMs) are critical components of the quantum error correction protocols expected to enable utility-scale quantum computing. MCMs can be modeled by quantum
instruments (a type of quantum operation or process), which can be characterized self-consistently using gate set tomography. However, experimentally estimated quantum instruments are often hard to interpret or relate to device physics. We address this challenge by adapting the error generator formalism — previously used to interpret noisy quantum gates by decomposing their error processes into physically meaningful sums of „elementary errors“ — to MCMs. We deploy our new analysis on a transmon qubit device to tease out and quantify error mechanisms including amplitude damping, readout error, and imperfect collapse. We examine in detail how the magnitudes of these errors vary with the readout pulse amplitude, recover the key features of dispersive readout predicted by theory, and show that these features can be modeled parsimoniously using a reduced model with just a few parameters.

Confining the state of light to a quantum manifold by engineered two-photon loss

  1. Zaki Leghtas,
  2. Steven Touzard,
  3. Ioan M. Pop,
  4. Angela Kou,
  5. Brian Vlastakis,
  6. Andrei Petrenko,
  7. Katrina M. Sliwa,
  8. Anirudh Narla,
  9. Shyam Shankar,
  10. Michael J. Hatridge,
  11. Matthew Reagor,
  12. Luigi Frunzio,
  13. Robert J. Schoelkopf,
  14. Mazyar Mirrahimi,
  15. and Michel H. Devoret
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially
engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have experimentally confined the state of a harmonic oscillator to the quantum manifold spanned by two coherent states of opposite phases. In particular, we have observed a Schrodinger cat state spontaneously squeeze out of vacuum, before decaying into a classical mixture. This was accomplished by designing a superconducting microwave resonator whose coupling to a cold bath is dominated by photon pair exchange. This experiment opens new avenues in the fields of nonlinear quantum optics and quantum information, where systems with multi-dimensional steady state manifolds can be used as error corrected logical qubits.