Deterministic entanglement swapping in a superconducting circuit

  1. Wen Ning,
  2. Xin-Jie Huang,
  3. Pei-Rong Han,
  4. Hekang Li,
  5. Hui Deng,
  6. Zhen-Biao Yang,
  7. Zhi-Rong Zhong,
  8. Yan Xia,
  9. Kai Xu,
  10. Dongning Zheng,
  11. and Shi-Biao Zheng
Entanglement swapping allows two particles that have never been coupled directly or indirectly to be nonlocally correlated. Besides fundamental interest, this procedure has applications
in complex entanglement manipulation and quantum communication. Entanglement swapping for qubits has been demonstrated in optical experiments, but where the process was conditional on detection of preset photon coincidence events, which succeeded with only a small probability. Here we report an unconditional entanglement swapping experiment with superconducting qubits. Using controllable qubit-qubit couplings mediated by a resonator, we prepare two highly entangled qubit pairs and then perform the Bell state measurement on two qubits coming from different entangled pairs, projecting the remaining two qubits to one of four Bell states. The measured concurrences for these Bell states are above 0.75,demonstrating the quantum nature of entanglement swapping. With this setup, we further demonstrate delayed-choice entanglement swapping, confirming whether two qubits behaved as in an entangled state or as in a separate state is determined by a later choice of the type of measurement on their partners. This is the first demonstration of entanglement-separability duality in a deterministic way, closing the detection loophole the previous experiments suffer from.

Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit

  1. Chao Song,
  2. Shi-Biao Zheng,
  3. Pengfei Zhang,
  4. Kai Xu,
  5. Libo Zhang,
  6. Qiujiang Guo,
  7. Wuxin Liu,
  8. Da Xu,
  9. Hui Deng,
  10. Keqiang Huang,
  11. Dongning Zheng,
  12. Xiaobo Zhu,
  13. and H. Wang
Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications,
among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multiqubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

Emulating many-body localization with a superconducting quantum processor

  1. Kai Xu,
  2. Jin-Jun Chen,
  3. Yu Zeng,
  4. Yuran Zhang,
  5. Chao Song,
  6. Wuxin Liu,
  7. Qiujiang Guo,
  8. Pengfei Zhang,
  9. Da Xu,
  10. Hui Deng,
  11. Keqiang Huang,
  12. H. Wang,
  13. Xiaobo Zhu,
  14. Dongning Zheng,
  15. and Heng Fan
The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence
of many-body localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization that only addresses noninteracting particles in the presence of disorder, greatly challenges this concept because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography. Here we present an experiment of fully emulating the MBL dynamics with a 10-qubit superconducting quantum processor, which represents a spin-1/2 XY model featuring programmable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and, more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems on the platform of large-scale multiqubit superconducting quantum processors.

10-qubit entanglement and parallel logic operations with a superconducting circuit

  1. Chao Song,
  2. Kai Xu,
  3. Wuxin Liu,
  4. Chuiping Yang,
  5. Shi-Biao Zheng,
  6. Hui Deng,
  7. Qiwei Xie,
  8. Keqiang Huang,
  9. Qiujiang Guo,
  10. Libo Zhang,
  11. Pengfei Zhang,
  12. Da Xu,
  13. Dongning Zheng,
  14. Xiaobo Zhu,
  15. H. Wang,
  16. Y.-A. Chen,
  17. C.-Y. Lu,
  18. Siyuan Han,
  19. and J.-W. Pan
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit,
where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures, and pave the way to large-scale quantum computation.