Scalable architecture for dark photon searches: Superconducting-qubit proof of principle

  1. Runqi Kang,
  2. Qingqin Hu,
  3. Xiao Cai,
  4. Wenlong Yu,
  5. Jingwei Zhou,
  6. Xing Rong,
  7. and Jiangfeng Du
The dark photon is a well-motivated candidate of dark matter due to its potential to open the window of new physics beyond the Standard Model. A fundamental mass-range-sensitivity dilemma
is always haunting the dark photon searching experiments: The resonant haloscopes have excellent sensitivity but are narrowband, and vice versa for the non-resonant ones. A scalable architecture integrating numerous resonant haloscopes will be a desirable solution to this dilemma. However, even the concept of scalable searching remains rarely explored, due to the size limitation of conventional haloscopes imposed by the dark photon wavelength. Here we propose and demonstrate a novel architecture using superconducting qubits as sub-wavelength haloscope units. By virtue of the scalability of superconducting qubits, it is possible to integrate multiple qubits with different frequencies on a chip-scale device. Furthermore, the frequencies of the qubits can be tuned to extend the searching mass range. Thus, our architectures allow for searching for dark photons in a broad mass range with high sensitivity. As a proof-of-principle experiment, we designed and fabricated a three-qubit chip and successfully demonstrated a scalable dark-photon searching. Our work established constraints on dark photons in the mass range of 15.632 μeV∼15.638 μeV, 15.838 μeV∼15.845 μeV, and 16.463 μeV∼16.468 μeV, simultaneously, and the constraints are much more stringent than the cosmology constraints. Our work can be scaled up in the future to boost the scrutiny of new physics and extended to search for more dark matter candidates, including dark photons, axions and axion-like particles.

Characterization of loss mechanisms in a fluxonium qubit

  1. Hantao Sun,
  2. Feng Wu,
  3. Hsiang-Sheng Ku,
  4. Xizheng Ma,
  5. Jin Qin,
  6. Zhijun Song,
  7. Tenghui Wang,
  8. Gengyan Zhang,
  9. Jingwei Zhou,
  10. Yaoyun Shi,
  11. Hui-Hai Zhao,
  12. and Chunqing Deng
Using a fluxonium qubit with in situ tunability of its Josephson energy, we characterize its energy relaxation at different flux biases as well as different Josephson energy values.
The relaxation rate at qubit energy values, ranging more than one order of magnitude around the thermal energy kBT, can be quantitatively explained by a combination of dielectric loss and 1/f flux noise with a crossover point. The amplitude of the 1/f flux noise is consistent with that extracted from the qubit dephasing measurements at the flux sensitive points. In the dielectric loss dominant regime, the loss is consistent with that arises from the electric dipole interaction with two-level-system (TLS) defects. In particular, as increasing Josephson energy thus decreasing qubit frequency at the flux insensitive spot, we find that the qubit exhibits increasingly weaker coupling to TLS defects thus desirable for high-fidelity quantum operations.

Titanium Nitride Film on Sapphire Substrate with Low Dielectric Loss for Superconducting Qubits

  1. Hao Deng,
  2. Zhijun Song,
  3. Ran Gao,
  4. Tian Xia,
  5. Feng Bao,
  6. Xun Jiang,
  7. Hsiang-Sheng Ku,
  8. Zhisheng Li,
  9. Xizheng Ma,
  10. Jin Qin,
  11. Hantao Sun,
  12. Chengchun Tang,
  13. Tenghui Wang,
  14. Feng Wu,
  15. Wenlong Yu,
  16. Gengyan Zhang,
  17. Xiaohang Zhang,
  18. Jingwei Zhou,
  19. Xing Zhu,
  20. Yaoyun Shi,
  21. Hui-Hai Zhao,
  22. and Chunqing Deng
Dielectric loss is one of the major decoherence sources of superconducting qubits. Contemporary high-coherence superconducting qubits are formed by material systems mostly consisting
of superconducting films on substrate with low dielectric loss, where the loss mainly originates from the surfaces and interfaces. Among the multiple candidates for material systems, a combination of titanium nitride (TiN) film and sapphire substrate has good potential because of its chemical stability against oxidization, and high quality at interfaces. In this work, we report a TiN film deposited onto sapphire substrate achieving low dielectric loss at the material interface. Through the systematic characterizations of a series of transmon qubits fabricated with identical batches of TiN base layers, but different geometries of qubit shunting capacitors with various participation ratios of the material interface, we quantitatively extract the loss tangent value at the substrate-metal interface smaller than 8.9×10−4 in 1-nm disordered layer. By optimizing the interface participation ratio of the transmon qubit, we reproducibly achieve qubit lifetimes of up to 300 μs and quality factors approaching 8 million. We demonstrate that TiN film on sapphire substrate is an ideal material system for high-coherence superconducting qubits. Our analyses further suggest that the interface dielectric loss around the Josephson junction part of the circuit could be the dominant limitation of lifetimes for state-of-the-art transmon qubits.

Fluxonium: an alternative qubit platform for high-fidelity operations

  1. Feng Bao,
  2. Hao Deng,
  3. Dawei Ding,
  4. Ran Gao,
  5. Xun Gao,
  6. Cupjin Huang,
  7. Xun Jiang,
  8. Hsiang-Sheng Ku,
  9. Zhisheng Li,
  10. Xizheng Ma,
  11. Xiaotong Ni,
  12. Jin Qin,
  13. Zhijun Song,
  14. Hantao Sun,
  15. Chengchun Tang,
  16. Tenghui Wang,
  17. Feng Wu,
  18. Tian Xia,
  19. Wenlong Yu,
  20. Fang Zhang,
  21. Gengyan Zhang,
  22. Xiaohang Zhang,
  23. Jingwei Zhou,
  24. Xing Zhu,
  25. Yaoyun Shi,
  26. Jianxin Chen,
  27. Hui-Hai Zhao,
  28. and Chunqing Deng
Superconducting qubits provide a promising path toward building large-scale quantum computers. The simple and robust transmon qubit has been the leading platform, achieving multiple
milestones. However, fault-tolerant quantum computing calls for qubit operations at error rates significantly lower than those exhibited in the state of the art. Consequently, alternative superconducting qubits with better error protection have attracted increasing interest. Among them, fluxonium is a particularly promising candidate, featuring large anharmonicity and long coherence times. Here, we engineer a fluxonium-based quantum processor that integrates high qubit-coherence, fast frequency-tunability, and individual-qubit addressability for reset, readout, and gates. With simple and fast gate schemes, we achieve an average single-qubit gate fidelity of 99.97% and a two-qubit gate fidelity of up to 99.72%. This performance is comparable to the highest values reported in the literature of superconducting circuits. Thus our work, for the first time within the realm of superconducting qubits, reveals an approach toward fault-tolerant quantum computing that is alternative and competitive to the transmon system.