Microwave storage and retrieval are essential capabilities for superconducting quantum circuits. Here, we demonstrate an on-chip multimode resonator in which strong parametric modulationinduces a large and tunable normal-mode splitting that enables microwave storage. When the spectral bandwidth of a short microwave pulse covers the two dressed-state absorption peaks, part of the pulse is absorbed and undergoes coherent energy exchange between the modes, producing a clear time-domain beating signal. By switching off the modulation before the beating arrives, we realize on-demand storage and retrieval, demonstrating an alternative approach to microwave photonic quantum memory. This parametric-normal-mode-splitting protocol offers a practical route toward a controllable quantum-memory mechanism in superconducting circuits.
We investigate the power spectral density emitted by a superconducting artificial atom coupled to the end of a semi-infinite transmission line and driven by two continuous radio-frequencyfields. In this setup, we observe the generation of multiple frequency peaks and the formation of frequency combs with equal detuning between those peaks. The frequency peaks originate from wave mixing of the drive fields, mediated by the artificial atom, highlighting the potential of this system as both a frequency converter and a frequency-comb generator. We demonstrate precise control and tunability in generating these frequency features, aligning well with theoretical predictions, across a relatively wide frequency range (tens of MHz, exceeding the linewidth of the artificial atom). The extensive and simple tunability of this frequency converter and comb generator, combined with its small physical footprint, makes it promising for quantum optics on chips and other applications in quantum technology.
We investigate the amplification of a microwave probe signal by a superconducting artificial atom, a transmon, strongly coupled to the end of a one-dimensional semi-infinite transmissionline. The end of the transmission line acts as a mirror for microwave fields. Due to the weak anharmonicity of the artificial atom, a strong pump field creates multi-photon excitations among the dressed states. Transitions between these dressed states, Rabi sidebands, give rise to either amplification or attenuation of the weak probe. We obtain a maximum amplitude amplification of about 18 %, higher than in any previous experiment with a single artificial atom, due to constructive interference between Rabi sidebands. We also characterize the noise properties of the system by measuring the spectrum of spontaneous emission.