Efficient Frequency Allocation for Superconducting Quantum Processors Using Improved Optimization Techniques

  1. Zewen Zhang,
  2. Pranav Gokhale,
  3. and Jeffrey M. Larson
Building on previous research on frequency allocation optimization for superconducting circuit quantum processors, this work incorporates several new techniques to improve overall solution
quality. New features include tightening constraints, imposing edgewise differences, including edge orientation in the optimization, and integrating multimodule designs with various boundary conditions. These enhancements allow for greater flexibility in processor design by eliminating the need for handpicked orientations. We support the efficient assembly of large processors with dense connectivity by choosing the best boundary conditions. Examples demonstrate that, at low computational cost, the new optimization approach finds a frequency configuration for a square chip with over 1,000 qubits and over 10% yield at much larger dispersion levels than required by previous approaches.

Optimizing frequency allocation for fixed-frequency superconducting quantum processors

  1. Alexis Morvan,
  2. Larry Chen,
  3. Jeffrey M. Larson,
  4. David I. Santiago,
  5. and Irfan Siddiqi
Fixed-frequency superconducting quantum processors are one of the most mature quantum computing architectures with high-coherence qubits and low-complexity controls. However, high-fidelity
multi-qubit gates pose tight requirements on individual qubit frequencies in these processors and their fabrication suffers from the large dispersion in the fabrication of Josephson junctions. It is inefficient to make a large number of processors because degeneracy in frequencies can degrade the processors‘ quality. In this article, we propose an optimization scheme based on mixed-integer programming to maximize the fabrication yield of quantum processors. We study traditional qubit and qutrit (three-level) architectures with cross-resonance interaction processors. We compare these architectures to a differential AC-Stark shift based on entanglement gates and show that our approach greatly improves the fabrication yield and also increases the scalability of these devices. Our approach is general and can be adapted to problems where one must avoid specific frequency collisions.