separated nodes in a quantum network. Here, we
report the on demand generation and characterization of Bell-type entangled
states between a superconducting qubit and propagating microwave fields
composed of zero, one and two-photon Fock states. Using low noise linear
amplification and efficient data acquisition we extract all relevant
correlations between the qubit and the photon states and demonstrate
entanglement with high fidelity.
Observation of Entanglement Between Itinerant Microwave Photons and a Superconducting Qubit
A localized qubit entangled with a propagating quantum field is well suited
to study non-local aspects of quantum mechanics and may also provide a channel
to communicate between spatially