An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multi-mode superconducting cavity. A dc voltage bias to the junction provides a source of microwave photons, while the circuit’s nonlinearity allows for efficient down-conversion of higher order Josephson frequencies down to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
Demonstration of an ac Josephson junction laser
Superconducting electronic devices have re-emerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation and long coherence times.