Strongly-anharmonic gateless gatemon qubits based on InAs/Al 2D heterostructure

  1. Shukai Liu,
  2. Arunav Bordoloi,
  3. Jacob Issokson,
  4. Ido Levy,
  5. Maxim G. Vavilov,
  6. Javad Shabani,
  7. and Vladimir Manucharyan
The gatemon qubits, made of transparent super-semi Josephson junctions, typically have even weaker anharmonicity than the opaque AlOx-junction transmons. However, flux-frustrated gatemons
can acquire a much stronger anharmonicity, originating from the interference of the higher-order harmonics of the supercurrent. Here we investigate this effect of enhanced anharmonicity in split-junction gatemon devices based on InAs/Al 2D heterostructure. We find that anharmonicity in excess of 100% can be routinely achieved at the half-integer flux sweet-spot without any need for electrical gating or excessive sensitivity to the offset charge noise. We verified that such „gateless gatemon“ qubits can be driven with Rabi frequencies more than 100 MHz, enabling gate operations much faster than what is possible with traditional gatemons and transmons. Furthermore, by analyzing a relatively high-resolution spectroscopy of the device transitions as a function of flux, we were able to extract fine details of the current-phase relation, to which transport measurements would hardly be sensitive. The strong anharmonicity of our gateless gatemons, along with their bare-bones design, can prove to be a precious resource that transparent super-semi junctions bring to quantum information processing.

Characterizing losses in InAs two-dimensional electron gas-based gatemon qubits

  1. William M. Strickland,
  2. Jaewoo Lee,
  3. Lukas Baker,
  4. Krishna Dindial,
  5. Bassel Heiba Elfeky,
  6. Mehdi Hatefipour,
  7. Peng Yu,
  8. Ido Levy,
  9. Vladimir E. Manucharyan,
  10. and Javad Shabani
The tunnelling of cooper pairs across a Josephson junction (JJ) allow for the nonlinear inductance necessary to construct superconducting qubits, amplifiers, and various other quantum
circuits. An alternative approach using hybrid superconductor-semiconductor JJs can enable a superconducting qubit architecture with full electric field control. Here we present continuous-wave and time-domain characterization of gatemon qubits based on an InAs 2DEG. We show that the qubit undergoes a vacuum Rabi splitting with a readout cavity and we drive coherent Rabi oscillations between the qubit ground and first excited states. We measure qubit coherence times to be T1= 100 ns over a 1.5 GHz tunable band. While various loss mechanisms are present in III-V gatemon circuits we detail future directions in enhancing the coherence times of qubit devices on this platform.