Superconducting parametric amplifiers offer the capability to amplify feeble signals with extremely low levels of added noise, potentially reaching quantum-limited amplification. Thischaracteristic makes them essential components in the realm of high-fidelity quantum computing and serves to propel advancements in the field of quantum sensing. In particular, Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth, a feature lacking in Josephson Parametric Amplifiers (JPAs), despite the latter being a more established technology. This paper presents recent developments of the DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) project, focusing on the latest prototypes of Kinetic Inductance TWPAs (KITWPAs). The project aims to develop a KITWPA capable of achieving 20 dB of amplification. To enhance the production yield, the first prototypes were fabricated with half the length and expected gain of the final device. In this paper, we present the results of the characterization of one of the half-length prototypes. The measurements revealed an average amplification of approximately 9dB across a 2GHz bandwidth for a KITWPA spanning 17mm in length.
Noise at the quantum limit over a broad bandwidth is a fundamental requirement for future cryogenic experiments for neutrino mass measurements, dark matter searches and Cosmic MicrowaveBackground (CMB) measurements as well as for fast high-fidelity read-out of superconducting qubits. In the last years, Josephson Parametric Amplifiers (JPA) have demonstrated noise levels close to the quantum limit, but due to their narrow bandwidth, only few detectors or qubits per line can be read out in parallel. An alternative and innovative solution is based on superconducting parametric amplification exploiting the travelling-wave concept. Within the DARTWARS (Detector Array Readout with Travelling Wave AmplifieRS) project, we develop Kinetic Inductance Travelling-Wave Parametric Amplifiers (KI-TWPAs) for low temperature detectors and qubit read-out. KI-TWPAs are typically operated in a threewave mixing (3WM) mode and are characterised by a high gain, a high saturation power, a large amplification bandwidth and nearly quantum limited noise performance. The goal of the DARTWARS project is to optimise the KI-TWPA design, explore new materials, and investigate alternative fabrication processes in order to enhance the overall performance of the amplifier. In this contribution we present the advancements made by the DARTWARS collaboration to produce a working prototype of a KI-TWPA, from the fabrication to the characterisation.