This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantumprocessor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins.
We propose a Quantum Non Demolition (QND) read-out scheme for a
superconducting artificial atom coupled to a resonator in a circuit QED
architecture, for which we estimate a very highmeasurement fidelity without
Purcell effect limitations. The device consists of two transmons coupled by a
large inductance, giving rise to a diamond-shape artificial atom with a logical
qubit and an ancilla qubit interacting through a cross-Kerr like term. The
ancilla is strongly coupled to a transmission line resonator. Depending on the
qubit state, the ancilla is resonantly or dispersively coupled to the
resonator, leading to a large contrast in the transmitted microwave signal
amplitude. This original method can be implemented with state of the art
Josephson parametric amplifier, leading to QND measurements in a few tens of
nanoseconds with fidelity as large as 99.9 %.
A new method for detecting the magnetic resonance of electronic spins at low
temperature is demonstrated. It consists in measuring the signal emitted by the
spins with a superconductingqubit that acts as a single-microwave-photon
detector, resulting in an enhanced sensitivity. We implement this new type of
electron-spin resonance spectroscopy using a hybrid quantum circuit in which a
transmon qubit is coupled to a spin ensemble consisting of NV centers in
diamond. With this setup we measure the NV center absorption spectrum at 30mK
at an excitation level of thicksim15,mu_{B} out of an ensemble of 10^{11}
spins.