Real-time simulations of transmon systems with time-dependent Hamiltonian models

  1. Hannes Lagemann
In this thesis we study aspects of Hamiltonian models which can affect the time evolution of transmon systems. We model the time evolution of various systems as a unitary real-time
process by numerically solving the time-dependent Schrödinger equation (TDSE). We denote the corresponding computer models as non-ideal gate-based quantum computer (NIGQC) models since transmons are usually used as transmon qubits in superconducting prototype gate-based quantum computers (PGQCs).We first review the ideal gate-based quantum computer (IGQC) model and provide a distinction between the IGQC, PGQCs and the NIGQC models we consider in this thesis. Then, we derive the circuit Hamiltonians which generate the dynamics of fixed-frequency and flux-tunable transmons. Furthermore, we also provide clear and concise derivations of effective Hamiltonians for both types of transmons. We use the circuit and effective Hamiltonians we derived to define two many-particle Hamiltonians, namely a circuit and an associated effective Hamiltonian. The interactions between the different subsystems are modelled as dipole-dipole interactions. Next, we develop two product-formula algorithms which solve the TDSE for the Hamiltonians we defined. Afterwards, we use these algorithms to investigate how various frequently applied assumptions affect the time evolution of transmon systems modelled with the many-particle effective Hamiltonian when a control pulse is applied. Here we also compare the time evolutions generated by the effective and circuit Hamiltonian. We find that the assumptions we investigate can substantially affect the time evolution of the probability amplitudes we model. Next, we investigate how susceptible gate-error quantifiers are to assumptions which make up the NIGQC model. We find that the assumptions we consider clearly affect gate-error quantifiers like the diamond distance and the average infidelity.

On the fragility of gate-error metrics in simulation models of flux-tunable transmon quantum computers

  1. Hannes Lagemann,
  2. Dennis Willsch,
  3. Madita Willsch,
  4. Fengping Jin,
  5. Hans De Raedt,
  6. and Kristel Michielsen
Constructing a quantum computer requires immensely precise control over a quantum system. A lack of precision is often quantified by gate-error metrics, such as the average infidelity
or the diamond distance. However, usually such gate-error metrics are only considered for individual gates, and not the errors that accumulate over consecutive gates. Furthermore, it is not well known how susceptible the metrics are to the assumptions which make up the model. Here, we investigate these issues using realistic simulation models of quantum computers with flux-tunable transmons and coupling resonators. We show that the gate-error metrics are susceptible to many of the assumptions which make up the model. Additionally, we find that consecutive gate errors do not accumulate linearly. Previous work showed that the gate-error metrics are poor predictors for the performance of consecutive gates. Here, we provide further evidence and a concise theoretical explanation for this finding. Furthermore, we discuss a problem that potentially limits the overall scaling capabilities of the device architecture we study in this work.