We investigate the ultrastrong tunable coupler for coupling of superconducting resonators. Obtained coupling constant exceeds 1 GHz, and the wide range tunability is achieved both antiferromagneticsand ferromagnetics from -1086 MHz to 604 MHz. Ultrastrong coupler is composed of rf-SQUID and dc-SQUID as tunable junctions, which connected to resonators via shared aluminum thin film meander lines enabling such a huge coupling constant. The spectrum of the coupler obviously shows the breaking of the rotating wave approximation, and our circuit model treating the Josephson junction as a tunable inductance reproduces the experimental results well. The ultrastrong coupler is expected to be utilized in quantum annealing circuits and/or NISQ devices with dense connections between qubits.
Of the many potential hardware platforms, superconducting quantum circuits have become the leading contender for constructing a scalable quantum computing system. All current architecturedesigns necessitate a 2D arrangement of superconducting qubits with nearest neighbour interactions, compatible with powerful quantum error correction using the surface code. A major hurdle for scalability in superconducting systems is the so called wiring problem, where qubits internal to a chip-set become inaccessible for external control/readout lines. Current approaches resort to intricate and exotic 3D wiring and packaging technology which is a significant engineering challenge to realize, while maintaining qubit fidelity. Here we solve this problem and present a modified superconducting scalable micro-architecture that does not require any 3D external line technology and reverts back to a completely planar design. This is enabled by a new pseudo-2D resonator network that provides inter-qubit connections via airbridges. We carried out experiments to examine the feasibility of the newly introduced airbridge component. The measured quality factor of these new inter-qubit resonators is sufficient for high fidelity gates, below the threshold for the surface code, with negligible measured cross-talk. The resulting physical separation of the external wirings and the inter-qubit connections on-chip should reduce cross-talk and decoherence as the chip-set increases in size. This result demonstrates that a large-scale, fully error corrected quantum computer can be constructed by monolithic integration technologies without additional overhead and without special packaging know-hows.