for high quantum-efficiency microwave readout lines. Built-in isolation, as well as gain, would address their primary limitation: lack of true directionality due to potential backward travel of electromagnetic radiation to their input port. Here, we demonstrate a Josephson-junction-based traveling-wave parametric amplifier isolator. It utilizes third-order nonlinearity for amplification and second-order nonlinearity for frequency upconversion of backward propagating modes to provide reverse isolation. These parametric processes, enhanced by a novel phase matching mechanism, exhibit gain of up to 20~dB and reverse isolation of up to 30~dB over a static 3~dB bandwidth greater than 500~MHz, while keeping near-quantum limited added noise. This demonstration of a broadband truly directional amplifier ultimately paves the way towards broadband quantum-limited microwave amplification lines without bulky magnetic isolators and with inhibited back-action.
A Traveling Wave Parametric Amplifier Isolator
Superconducting traveling-wave parametric amplifiers have emerged as highly promising devices for near-quantum-limited broadband amplification of microwave signals and are essential