Versatile parametric coupling between two statically decoupled transmon qubits

  1. X. Y. Jin,
  2. K. Cicak,
  3. Z. Parrott,
  4. S. Kotler,
  5. F. Lecocq,
  6. J. Teufel,
  7. J. Aumentado,
  8. E. Kapit,
  9. and R. W. Simmonds
Parametric coupling is a powerful technique for generating tunable interactions between superconducting circuits using only microwave tones. Here, we present a highly flexible parametric

Efficient qubit measurement with a nonreciprocal microwave amplifier

  1. F. Lecocq,
  2. L. Ranzani,
  3. G. A. Peterson,
  4. K. Cicak,
  5. X. Y. Jin,
  6. R. W. Simmonds,
  7. J. D. Teufel,
  8. and J. Aumentado
The act of observing a quantum object fundamentally perturbs its state, resulting in a random walk toward an eigenstate of the measurement operator. Ideally, the measurement is responsible

Control and readout of a superconducting qubit using a photonic link

  1. F. Lecocq,
  2. F. Quinlan,
  3. K. Cicak,
  4. J. Aumentado,
  5. S. A. Diddams,
  6. and J. D. Teufel
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubit

Microwave measurement beyond the quantum limit with a nonreciprocal amplifier

  1. F. Lecocq,
  2. L. Ranzani,
  3. G. A. Peterson,
  4. K. Cicak,
  5. A. Metelmann,
  6. S. Kotler,
  7. R. W. Simmonds,
  8. J. D. Teufel,
  9. and J. Aumentado
The measurement of a quantum system is often performed by encoding its state in a single observable of a light field. The measurement efficiency of this observable can be reduced by

Ultrastrong parametric coupling between a superconducting cavity and a mechanical resonator

  1. G. A. Peterson,
  2. S. Kotler,
  3. F. Lecocq,
  4. K. Cicak,
  5. X. Y. Jin,
  6. R. W. Simmonds,
  7. J. Aumentado,
  8. and J. D. Teufel
We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture,

Demonstration of efficient nonreciprocity in a microwave optomechanical circuit

  1. G. A. Peterson,
  2. F. Lecocq,
  3. K. Cicak,
  4. R. W. Simmonds,
  5. J. Aumentado,
  6. and J. D. Teufel
The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large

Nonreciprocal microwave signal processing with a Field-Programmable Josephson Amplifier

  1. F. Lecocq,
  2. L. Ranzani,
  3. G. A. Peterson,
  4. K. Cicak,
  5. R. W. Simmonds,
  6. J. D. Teufel,
  7. and J. Aumentado
We report on the design and implementation of a Field Programmable Josephson Amplifier (FPJA) – a compact and lossless superconducting circuit that can be programmed extit{in

Tunable-Cavity QED with Phase Qubits

  1. J. D. Whittaker,
  2. F. C. S. da Silva,
  3. M. S. Allman,
  4. F. Lecocq,
  5. K. Cicak,
  6. A. J. Sirois,
  7. J. D. Teufel,
  8. J. Aumentado,
  9. and R. W. Simmonds
We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both microwave