Magnetic-field resilience of 3D transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T

  1. J. Krause,
  2. C. Dickel,
  3. E. Vaal,
  4. M. Vielmetter,
  5. J. Feng,
  6. R. Bounds,
  7. G. Catelani,
  8. J. M. Fink,
  9. and Yoichi Ando
Magnetic-field-resilient superconducting circuits enable sensing applications and hybrid quantum-computing architectures involving spin or topological qubits and electro-mechanical
elements, as well as studying flux noise and quasiparticle loss. We investigate the effect of in-plane magnetic fields up to 1 T on the spectrum and coherence times of thin-film 3D aluminum transmons. Using a copper cavity, unaffected by strong magnetic fields, we can solely probe the magnetic-field effect on the transmons. We present data on a single-junction and a SQUID transmon, that were cooled down in the same cavity. As expected, transmon frequencies decrease with increasing fields, due to a suppression of the superconducting gap and a geometric Fraunhofer-like contribution. Nevertheless, the thin-film transmons show strong magnetic-field resilience: both transmons display microsecond coherence up to at least 0.65 T, and T1 remains above 1 μs over the entire measurable range. SQUID spectroscopy is feasible up to 1 T, the limit of our magnet. We conclude that thin-film aluminum Josephson junctions are a suitable hardware for superconducting circuits in the high-magnetic-field regime.