Error-divisible two-qubit gates

  1. David Rodriguez Perez,
  2. Paul Varosy,
  3. Ziqian Li,
  4. Tanay Roy,
  5. Eliot Kapit,
  6. and David Schuster
We introduce a simple, widely applicable formalism for designing „error-divisible“ two qubit gates: a quantum gate set where fractional rotations have proportionally reduced

Chiral Cavity Quantum Electrodynamics

  1. John Clai Owens,
  2. Margaret G. Panetta,
  3. Brendan Saxberg,
  4. Gabrielle Roberts,
  5. Srivatsan Chakram,
  6. Ruichao Ma,
  7. Andrei Vrajitoarea,
  8. Jonathan Simon,
  9. and David Schuster
Cavity quantum electrodynamics, which explores the granularity of light by coupling a resonator to a nonlinear emitter, has played a foundational role in the development of modern quantum

A tunable High-Q millimeter wave cavity for hybrid circuit and cavity QED experiments

  1. Aziza Suleymanzade,
  2. Alexander Anferov,
  3. Mark Stone,
  4. Ravi K. Naik,
  5. Jonathan Simon,
  6. and David Schuster
The millimeter wave (mm-wave) frequency band provides exciting prospects for quantum science and devices, since many high-fidelity quantum emitters, including Rydberg atoms, molecules

Universal gates for protected superconducting qubits using optimal control

  1. Mohamed Abdelhafez,
  2. Brian Baker,
  3. Andras Gyenis,
  4. Pranav Mundada,
  5. Andrew A. Houck,
  6. David Schuster,
  7. and Jens Koch
We employ quantum optimal control theory to realize quantum gates for two protected superconducting circuits: the heavy-fluxonium qubit and the 0-π qubit. Utilizing automatic differentiation

Input-output theory for superconducting and photonic circuits that contain weak retro-reflections and other weak pseudo-cavities

  1. Robert Cook,
  2. David Schuster,
  3. Andrew Cleland,
  4. and Kurt Jacobs
Input-output theory is invaluable for treating superconducting and photonic circuits connected by transmission lines or waveguides. However, this theory cannot in general handle situations