Bolometer operating at the threshold for circuit quantum electrodynamics

  1. R. Kokkoniemi,
  2. J.-P. Girard,
  3. D. Hazra,
  4. A. Laitinen,
  5. J. Govenius,
  6. R.E. Lake,
  7. I. Sallinen,
  8. V. Vesterinen,
  9. P. Hakonen,
  10. and M. Möttönen
Radiation sensors based on the heating effect of the absorbed radiation are typically relatively simple to operate and flexible in terms of the input frequency. Consequently, they are
widely applied, for example, in gas detection, security, THz imaging, astrophysical observations, and medical applications. A new spectrum of important applications is currently emerging from quantum technology and especially from electrical circuits behaving quantum mechanically. This circuit quantum electrodynamics (cQED) has given rise to unprecedented single-photon detectors and a quantum computer supreme to the classical supercomputers in a certain task. Thermal sensors are appealing in enhancing these devices since they are not plagued by quantum noise and are smaller, simpler, and consume about six orders of magnitude less power than the commonly used traveling-wave parametric amplifiers. However, despite great progress in the speed and noise levels of thermal sensors, no bolometer to date has proven fast and sensitive enough to provide advantages in cQED. Here, we experimentally demonstrate a bolometer surpassing this threshold with a noise equivalent power of 30zW/Hz−−−√ on par with the current record while providing two-orders of magnitude shorter thermal time constant of 500 ns. Importantly, both of these characteristic numbers have been measured directly from the same device, which implies a faithful estimation of the calorimetric energy resolution of a single 30-GHz photon. These improvements stem from the utilization of a graphene monolayer as the active material with extremely low specific heat. The minimum demonstrated time constant of 200 ns falls greatly below the state-of-the-art dephasing times of roughly 100 {\mu}s for superconducting qubits and meets the timescales of contemporary readout schemes thus enabling the utilization of thermal detectors in cQED.

A self-aligned nano-fabrication process for vertical NbN-MgO-NbN Josephson junctions

  1. A. Grimm,
  2. S. Jebari,
  3. D. Hazra,
  4. F. Blanchet,
  5. F. Gustavo,
  6. J.-L. Thomassin,
  7. and M. Hofheinz
We present a new process for fabricating vertical NbN-MgO-NbN Josephson junctions using self-aligned silicon nitride spacers. It allows for a wide range of junction areas from 0.02
um^2 to several 100 um^2. At the same time, it is suited for the implementation of complex microwave circuits with transmission line impedances ranging from < 1 Ohm to > 1 kOhm. The constituent thin films and the finished junctions are characterized. The latter are shown to have high gap voltages (> 4 mV) and low sub-gap leakage currents.

Quantum limited amplification from inelastic Cooper pair tunneling

  1. S. Jebari,
  2. F. Blanchet,
  3. A. Grimm,
  4. D. Hazra,
  5. R. Albert,
  6. P. Joyez,
  7. D. Vion,
  8. D. Esteve,
  9. F. Portier,
  10. and M. Hofheinz
Nature sets fundamental limits regarding how accurate the amplification of analog signals may be. For instance, a linear amplifier unavoidably adds some noise which amounts to half
a photon at best. While for most applications much higher noise levels are acceptable, the readout of microwave quantum systems, such as spin or superconducting qubits requires noise as close as possible to this ultimate limit. To date it is approached only by parametric amplifiers exploiting non-linearities in superconducting circuits and driven by a strong microwave pump tone. However, this microwave drive makes them much more difficult to implement and operate than conventional DC powered amplifiers, which, so far suffer from much higher noise. Here we present the first experimental proof that a simple DC-powered setup allows for amplification close to the quantum limit. Our amplification scheme is based on the stimulated microwave photon emission accompanying inelastic Cooper pair tunneling through a DC-biased Josephson junction, with the key to low noise lying in the separation of nonlinear and dissipative elements, in analogy to parametric amplifiers.

Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition

  1. D. Hazra,
  2. N. Tsavdaris,
  3. S. Jebari,
  4. A. Grimm,
  5. F. Blanchet,
  6. F. Mercier,
  7. E. Blanquet,
  8. C. Chapelier,
  9. and M. Hofheinz
Niobium nitride (NbN) is widely used in high-frequency superconducting electronics circuits because it has one of the highest superconducting transition temperatures (Tc ∼ 16.5 K)
and largest gap among conventional superconductors. In its thin-film form, the Tc of NbN is very sensitive to growth conditions and it still remains a challenge to grow NbN thin film (below 50 nm) with high Tc. Here, we report on the superconducting properties of NbN thin films grown by high-temperature chemical vapor deposition (HTCVD). Transport measurements reveal significantly lower disorder than previously reported, characterized by a Ioffe-Regel (kFℓ) parameter of ∼ 14. Accordingly we observe Tc ∼ 17.06 K (point of 50% of normal state resistance), the highest value reported so far for films of thickness below 50 nm, indicating that HTCVD could be particularly useful for growing high quality NbN thin films.