Automatic Characterization of Fluxonium Superconducting Qubits Parameters with Deep Transfer Learning

  1. Huan-Hsuan Kung,
  2. Chen-Yu Liu,
  3. Qian-Rui Lee,
  4. Chiang-Yuan Hu,
  5. Yu-Chi Chang,
  6. Ching-Yeh Chen,
  7. Daw-Wei Wang,
  8. and Yen-Hsiang Lin
Accurate determination of qubit parameters is critical for the successful implementation of quantum information and computation applications. In solid state systems, the parameters
of individual qubits vary across the entire system, requiring time consuming measurements and manual fitting processes for characterization. Recent developed superconducting qubits, such as fluxonium or 0-pi qubits, offer improved fidelity operations but exhibit a more complex physical and spectral structure, complicating parameter extraction. In this work, we propose a machine learning (ML)based methodology for the automatic and accurate characterization of fluxonium qubit parameters. Our approach utilized the energy spectrum calculated by a model Hamiltonian with various magnetic fields, as training data for the ML model. The output consists of the essential fluxonium qubit energy parameters, EJ, EC, and EL in Hamiltonian. The ML model achieves remarkable accuracy (with an average accuracy 95.6%) as an initial guess, enabling the development of an automatic fitting procedure for direct application to realistic experimental data. Moreover, we demonstrate that similar accuracy can be retrieved even when the input experimental spectrum is noisy or incomplete, highlighting the model robustness. These results suggest that our automated characterization method, based on a transfer learning approach, provides a reliable framework for future extensions to other superconducting qubits or different solid-state systems. Ultimately, we believe this methodology paves the way for the construction of large-scale quantum processors.

Microwave amplification via interfering multi-photon processes in a half-waveguide quantum electrodynamics system

  1. Fahad Aziz,
  2. Kuan-Ting Lin,
  3. Ping-Yi Wen,
  4. Samina,
  5. Yu Chen Lin,
  6. Emely Wiegand,
  7. Ching-Ping Lee,
  8. Yu-Ting Cheng,
  9. Ching-Yeh Chen,
  10. Chin-Hsun Chien,
  11. Kai-Min Hsieh,
  12. Yu-Huan Huang,
  13. Ian Hou,
  14. Jeng-Chung Chen,
  15. Yen-Hsiang Lin,
  16. Anton Frisk Kockum,
  17. Guin-Dar Lin,
  18. and Io-Chun Hoi
We investigate the amplification of a microwave probe signal by a superconducting artificial atom, a transmon, strongly coupled to the end of a one-dimensional semi-infinite transmission
line. The end of the transmission line acts as a mirror for microwave fields. Due to the weak anharmonicity of the artificial atom, a strong pump field creates multi-photon excitations among the dressed states. Transitions between these dressed states, Rabi sidebands, give rise to either amplification or attenuation of the weak probe. We obtain a maximum amplitude amplification of about 18 %, higher than in any previous experiment with a single artificial atom, due to constructive interference between Rabi sidebands. We also characterize the noise properties of the system by measuring the spectrum of spontaneous emission.