Quantum superconducting circuit with flexible coupler has been a powerful platform for designing quantum thermal machines. In this letter, we employ the tunable coupling of two superconductingresonators to realize a heat valve by modulating magnetic flux using a superconducting quantum interference device (SQUID). It is shown that a heat valve can be realized in a wide parameter range. We find a consistent relation between the heat current and quantum entanglement, which indicates the dominant role of entanglement on the heat valve. It provides an insightful understanding of quantum features in quantum heat machines.
Precisely controlling heat transfer in a quantum mechanical system is particularly significant for designing quantum thermodynamical devices. With the technology of experiment advances,circuit quantum electrodynamics (circuit QED) has become a promising system due to controllable light matter interactions as well as flexible coupling strengths. In this paper, we design a thermal diode in terms of the two-photon Rabi model of the circuit QED system. We find that the thermal diode can not only be realized in the resonant coupling but also achieve better performance, especially for the detuned qubit-photon ultrastrong coupling. We also study the photonic detection rates and their nonreciprocity, which indicates similar behaviors with the nonreciprocal heat transport. This provides the potential to understand thermal diode behavior from the quantum optical perspective and could shed new insight into the relevant research on thermodynamical devices.
The principle of superposition is a key ingredient for quantum mechanics. A recent work (M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016)) has shown that a quantum adder thatdeterministically generates a superposition of two unknown states is forbidden. Here we propose a probabilistic approach for creating a superposition state of two arbitrary states encoded in two three-dimensional cavities. Our implementation is based on a three-level superconducting transmon qubit dispersively coupled to two cavities. Numerical simulations show that high-fidelity generation of the superposition of two coherent states is feasible with current circuit QED technology. Our method also works for other physical systems such as other types of superconducting qubits, natural atoms, quantum dots, and nitrogen-vacancy (NV) centers.
, a 3-qubit quantum Fredkin (i.e., controlled-SWAP) gate was demonstrated by using linear"]optics. Here we propose a simple experimental scheme by utilizing the dispersive interaction in superconducting quantum circuit to implement a hybrid Fredkin gate with a superconducting flux qubit as the control qubit and two separated quantum memories as the target qudits. The quantum memories considered here are prepared by the superconducting coplanar waveguide resonators or nitrogen-vacancy center ensembles. In particular, it is shown that this Fredkin gate can be realized using a single-step operation and more importantly, each target qudit can be in an arbitrary state with arbitrary degrees of freedom. Furthermore, we show that this experimental scheme has many potential applications in quantum computation and quantum information processing such as generating arbitrary entangled states (discrete-variable states or continuous-variable states) of the two memories, measuring the fidelity and the entanglement between the two memories. With state-of-the-art circuit QED technology, the numerical simulation is performed to demonstrate that two-memory NOON states, entangled coherent states, and entangled cat states can be efficiently synthesized.
Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a schemeto transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.
The realization of cross-Kerr nonlinearity is an important task for many applications in quantum information processing. In this work, we propose a method for realizing cross-Kerr nonlinearityinteraction between two superconducting coplanar waveguide resonators coupled by a three-level superconducting flux qutrit (coupler). By employing the qutrit-resonator dispersive interaction, we derive an effective Hamiltonian involving two-photon number operators and a coupler operator. This Hamiltonian can be used to describe a cross-Kerr nonlinearity interaction between two resonators when the coupler is in the ground state. Because the coupler is unexcited during the entire process, the effect of coupler decoherence can be greatly minimized. More importantly, compared with the previous proposals, our proposal does not require classical pulses. Furthermore, due to use of only a three-level qutrit, the experimental setup is much simplified when compared with previous proposals requiring a four-level artificial atomic systems. Based on our Hamiltonian, we implement a two-resonator qubits controlled-phase gate and generate a two-resonator entangled coherent state. Numerical simulation shows that the high-fidelity implementation of the phase gate and creation of the entangled coherent state are feasible with current circuit QED technology.