In this work, we develop a comprehensive numerical analysis of the dynamic response of a Josephson Traveling Wave Parametric Amplifier (JTWPA) by varying the driving parameters, witha focus on the pathways leading to chaotic behavior. By tuning the working conditions, we capture the broad spectrum of dynamical regimes accessible to JTWPAs, delineating the settings under which transition to chaos occurs. Furthermore, we extend our investigation to device formed by junctions characterized by a non–sinusoidal current phase relation (CPR) and exploring the impact of its shape on the amplifier’s performance. Through the study of gain characteristics, Poincaré sections, and Fourier spectra, we provide an in-depth understanding of how non-linearity and CPR nonsinusoidality influence the JTWPAs‘ operational effectiveness and stability. This investigation offers insights into optimizing the device designs for enhanced performance and robustness against chaotic disruptions, in order to establish a framework for predicting and controlling JTWPA behavior in practical applications. This effort will pave the way for the development of devices with tailored dynamic responses and for advancements in quantum computing and precision measurement technologies, where stability and high fidelity are of paramount importance.
Superconducting parametric amplifiers offer the capability to amplify feeble signals with extremely low levels of added noise, potentially reaching quantum-limited amplification. Thischaracteristic makes them essential components in the realm of high-fidelity quantum computing and serves to propel advancements in the field of quantum sensing. In particular, Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth, a feature lacking in Josephson Parametric Amplifiers (JPAs), despite the latter being a more established technology. This paper presents recent developments of the DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) project, focusing on the latest prototypes of Kinetic Inductance TWPAs (KITWPAs). The project aims to develop a KITWPA capable of achieving 20 dB of amplification. To enhance the production yield, the first prototypes were fabricated with half the length and expected gain of the final device. In this paper, we present the results of the characterization of one of the half-length prototypes. The measurements revealed an average amplification of approximately 9dB across a 2GHz bandwidth for a KITWPA spanning 17mm in length.
Noise at the quantum limit over a broad bandwidth is a fundamental requirement for future cryogenic experiments for neutrino mass measurements, dark matter searches and Cosmic MicrowaveBackground (CMB) measurements as well as for fast high-fidelity read-out of superconducting qubits. In the last years, Josephson Parametric Amplifiers (JPA) have demonstrated noise levels close to the quantum limit, but due to their narrow bandwidth, only few detectors or qubits per line can be read out in parallel. An alternative and innovative solution is based on superconducting parametric amplification exploiting the travelling-wave concept. Within the DARTWARS (Detector Array Readout with Travelling Wave AmplifieRS) project, we develop Kinetic Inductance Travelling-Wave Parametric Amplifiers (KI-TWPAs) for low temperature detectors and qubit read-out. KI-TWPAs are typically operated in a threewave mixing (3WM) mode and are characterised by a high gain, a high saturation power, a large amplification bandwidth and nearly quantum limited noise performance. The goal of the DARTWARS project is to optimise the KI-TWPA design, explore new materials, and investigate alternative fabrication processes in order to enhance the overall performance of the amplifier. In this contribution we present the advancements made by the DARTWARS collaboration to produce a working prototype of a KI-TWPA, from the fabrication to the characterisation.
Quantum Sensing is a rapidly expanding research field that finds one of its applications in Fundamental Physics, as the search for Dark Matter. Recent developments in the fabricationof superconducting qubits are contributing to driving progress in Quantum Sensing. Such devices have already been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND). This technique allows us to detect the presence of the same photon multiple times without absorbing it, with remarkable sensitivity improvements and dark count rate suppression in experiments based on high-precision microwave photon detection, such as Axions and Dark Photons search experiments. In this context, the INFN Qub-IT project goal is to realize an itinerant single-photon counter based on superconducting qubits that will exploit QND. The simulation step is fundamental for optimizing the design before manufacturing and finally characterizing the fabricated chip in a cryogenic environment. In this study we present Qub-IT’s status towards the characterization of its first superconducting transmon qubit devices, illustrating their design and simulation.
We propose a scheme for the detection of microwave induced photons through current-biased Josephson junction, from the point of view of the statistical decision theory. Our analysisis based on the numerical study of the zero voltage lifetime distribution in response to a periodic train of pulses, that mimics the absorption of photons. The statistical properties of the detection are retrieved comparing the thermally induced transitions with the distribution of the switchings to the finite voltage state due to the joint action of thermal noise and of the incident pulses. The capability to discriminate the photon arrival can be quantified through the Kumar-Caroll index, which is a good indicator of the Signal-to-Noise-Ratio. The index can be exploited to identify the system parameters best suited for the detection of weak microwave photons.