High-fidelity quantum non-demolition qubit measurement is critical to error correction and rapid qubit feedback in large-scale quantum computing. High-fidelity readout requires passinga short and strong pulse through the qubit’s readout resonator, which is then processed by a sufficiently high bandwidth, high saturation power, and quantum-limited amplifier. We have developed a design pipeline that combines time-domain simulation of the un-truncated device Hamiltonian, fabrication constraints, and maximization of saturation power. We have realized an amplifier based on a modified NIST tri-layer Nb fabrication suite which utilizes an array of 25 radio frequency Superconducting QUantum Interference Devices (rf SQUIDs) embedded within a low-Q resonator powered by a high-power voltage pump delivered via a diplexer on the signal port. We show that, despite the intensity of the pump, the device is quantum-efficient and capable of high-fidelity measurement limited by state transitions in the transmon. We present experimental data demonstrating up to -91.2 dBm input saturation power with 20 dB gain, up to 28 MHz instantaneous bandwidth, and phase-preserving qubit measurements with 62% quantum efficiency.
Circuit QED based quantum information processing relies on low noise amplification for signal readout. In the realm of microwave superconducting circuits, this amplification is oftenachieved via Josephson parametric amplifiers (JPA). In the past, these amplifiers exhibited low power added efficiency (PAE), which is roughly the fraction of pump power that is converted to output signal power. This is increasingly relevant because recent attempts to build high saturation power amplifiers achieve this at the cost of very low PAE, which in turn puts a high heat load on the cryostat and limits the number of these devices that a dilution refrigerator can host. Here, we numerically investigate upper bounds on PAE. We focus on a class of parametric amplifiers that consists of a capacitor shunted by a nonlinear inductive block. We first set a benchmark for this class of amplifiers by considering nonlinear blocks described by an arbitrary polynomial current-phase relation. Next, we propose two circuit implementations of the nonlinear block. Finally, we investigate chaining polynomial amplifiers. We find that while amplifiers with higher gain have a lower PAE, regardless of the gain there is considerable room to improve as compared to state of the art devices. For example, for a phase-sensitive amplifier with a power gain of 20 dB, the PAE is ~0.1% for typical JPAs, 5.9% for our simpler circuit JPAs, 34% for our more complex circuit JPAs, 48% for our arbitrary polynomial amplifiers, and at least 95% for our chained amplifiers.
Increasing the fidelity of single-qubit gates requires a combination of faster pulses and increased qubit coherence. However, with resonant qubit drive via a capacitively coupled port,these two objectives are mutually contradictory, as higher qubit quality factor requires a weaker coupling, necessitating longer pulses for the same applied power. Increasing drive power, on the other hand, can heat the qubit’s environment and degrade coherence. In this work, by using the inherent non-linearity of the transmon qubit, we circumvent this issue by introducing a new parametric driving scheme to perform single-qubit control. Specifically, we achieve rapid gate speed by pumping the transmon’s native Kerr term at approximately one third of the qubit’s resonant frequency. Given that transmons typically operate within a fairly narrow range of anharmonicity, this technique is applicable to all transmons. In both theory and experiment, we show that the Rabi rate of the process is proportional to applied drive amplitude cubed, allowing for rapid gate speed with only modest increases in applied power. In addition, we demonstrate that filtering can be used to protect the qubit’s coherence while performing rapid gates, and present theoretical calculations indicating that decay due to multi-photon losses, even in very strongly coupled drive lines, will not limit qubit lifetime. We demonstrate π/2 pulses as short as tens of nanoseconds with fidelity as high as 99.7\%, limited by the modest coherence of our transmon. We also present calculations indicating that this technique could reduce cryostat heating for fast gates, a vital requirement for large-scale quantum computers.