Interacting Qubit-Photon Bound States with Superconducting Circuits

  1. Neereja M. Sundaresan,
  2. Rex Lundgren,
  3. Guanyu Zhu,
  4. Alexey V. Gorshkov,
  5. and Andrew A. Houck
Qubits strongly coupled to a photonic crystal give rise to many exotic physical scenarios, beginning with single and multi-excitation qubit-photon dressed bound states comprising induced
spatially localized photonic modes, centered around the qubits, and the qubits themselves. The localization of these states changes with qubit detuning from the band-edge, offering an avenue of in situ control of bound state interaction. Here, we present experimental results from a device with two qubits coupled to a superconducting microwave photonic crystal and realize tunable on-site and inter-bound state interactions. We observe a fourth-order two photon virtual process between bound states indicating strong coupling between the photonic crystal and qubits. Due to their localization-dependent interaction, these states offer the ability to create one-dimensional chains of bound states with tunable and potentially long-range interactions that preserve the qubits‘ spatial organization, a key criterion for realization of certain quantum many-body models. The widely tunable, strong and robust interactions demonstrated with this system are promising benchmarks towards realizing larger, more complex systems of bound states.

Quantum electrodynamics near a photonic band-gap

  1. Yanbing Liu,
  2. and Andrew A. Houck
Photonic crystals provide an extremely powerful toolset for manipulation of optical dispersion and density of states, and have thus been employed for applications from photon generation
to quantum sensing with NVs and atoms. The unique control afforded by these media make them a beautiful, if unexplored, playground for strong coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. In this work we demonstrate that such hybridization can create localized cavity modes that live within the photonic band-gap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit QED architecture, as well as new opportunities for dissipative quantum state engineering.

Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit

  1. Gengyan Zhang,
  2. Yanbing Liu,
  3. James J. Raftery,
  4. and Andrew A. Houck
We demonstrate the suppression of photon shot noise dephasing in a superconducting qubit by eliminating its dispersive coupling to the readout cavity. This is achieved in a tunable
coupling qubit, where the qubit frequency and coupling rate can be controlled independently. We observe that the coherence time approaches twice the relaxation time and becomes less sensitive to thermal photon noise when the dispersive coupling rate is tuned from several MHz to 22 kHz. This work provides a promising building block in circuit quantum electrodynamics that can hold high coherence and be integrated into larger systems.

Broadband Filters for Abatement of Spontaneous Emission for Superconducting Qubits

  1. Nicholas T. Bronn,
  2. Yanbing Liu,
  3. Jared B. Hertzberg,
  4. Antonio D. Córcoles,
  5. Andrew A. Houck,
  6. Jay M. Gambetta,
  7. and Jerry M. Chow
The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential for the goal of building a quantum computer. However, the parameters of a superconducting qubit
device necessary to achieve this typically enhance qubit relaxation by spontaneous emission through the measurement channel. Here we design a broadband filter using impedance engineering to allow photons to leave the resonator at the cavity frequency but not at the qubit frequency. This broadband filter is implemented both in an on-chip and off-chip configuration.

Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

  1. Alessandro Chiesa,
  2. Paolo Santini,
  3. Dario Gerace,
  4. James Raftery,
  5. Andrew A. Houck,
  6. and Stefano Carretta
Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be
required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely-promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model; for these, we numerically simulate the scheme by including the main sources of decoherence. In addition, we show how to circumvent the potentially harmful effects of inhomogeneous broadening of the spin systems.

Beyond Strong Coupling in a Massively Multimode Cavity

  1. Neereja M. Sundaresan,
  2. Yanbing Liu,
  3. Darius Sadri,
  4. Laszlo J. Szocs,
  5. Devin L. Underwood,
  6. Moein Malekakhlagh,
  7. Hakan E. Tureci,
  8. and Andrew A. Houck
The study of light-matter interaction has seen a resurgence in recent years, stimulated by highly controllable, precise, and modular experiments in cavity quantum electrodynamics (QED).
The achievement of strong coupling, where the coupling between a single atom and fundamental cavity mode exceeds the decay rates, was a major milestone that opened the doors to a multitude of new investigations. Here we introduce multimode strong coupling (MMSC), where the coupling is comparable to the free spectral range (FSR) of the cavity, i.e. the rate at which a qubit can absorb a photon from the cavity is comparable to the round trip transit rate of a photon in the cavity. We realize, via the circuit QED architecture, the first experiment accessing the MMSC regime, and report remarkably widespread and structured resonance fluorescence, whose origin extends beyond cavity enhancement of sidebands. Our results capture complex multimode, multiphoton processes, and the emergence of ultranarrow linewidths. Beyond the novel phenomena presented here, MMSC opens a major new direction in the exploration of light-matter interactions.

Stochastic Differential Equations for Quantum Dynamics of Spin-Boson Networks

  1. Stephan Mandt,
  2. Darius Sadri,
  3. Andrew A. Houck,
  4. and Hakan E. Türeci
The quantum dynamics of open many-body systems poses a challenge for computational approaches. Here we develop a stochastic scheme based on the positive P phase-space representation
to study the nonequilibrium dynamics of coupled spin-boson networks that are driven and dissipative. Such problems are at the forefront of experimental research in cavity and solid state realizations of quantum optics, as well as cold atom physics, trapped ions and superconducting circuits. We demonstrate and test our method on a driven, dissipative two-site system, each site involving a spin coupled to a photonic mode, with photons hopping between the sites, where we find good agreement with Monte Carlo Wavefunction simulations. In addition to numerically reproducing features recently observed in an experiment [Phys. Rev. X 4, 031043 (2014)], we also predict a novel steady state quantum dynamical phase transition for an asymmetric configuration of drive and dissipation.

Observation of a Dissipation-Induced Classical to Quantum Transition

  1. James Raftery,
  2. Darius Sadri,
  3. Sebastian Schmidt,
  4. Hakan E. Türeci,
  5. and Andrew A. Houck
The emergence of non-trivial structure in many-body physics has been a central topic of research bearing on many branches of science. Important recent work has explored the non-equilibrium
quantum dynamics of closed many-body systems. Photonic systems offer a unique platform for the study of open quantum systems. We report here the experimental observation of a novel dissipation driven dynamical localization transition of strongly correlated photons in an extended superconducting circuit. Monitoring the homodyne signal reveals this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a new class of scalable quantum simulators with well controlled coherent and dissipative dynamics suited to the study of quantum many-body phenomena out of equilibrium.

Time-Reversal Symmetrization of Spontaneous Emission for High Fidelity Quantum State Transfer

  1. Srikanth J. Srinivasan,
  2. Neereja M. Sundaresan,
  3. Darius Sadri,
  4. Yanbing Liu,
  5. Jay M. Gambetta,
  6. Terri Yu,
  7. S. M. Girvin,
  8. and Andrew A. Houck
We demonstrate the ability to control the spontaneous emission from a superconducting qubit coupled to a cavity. The time domain profile of the emitted photon is shaped into a symmetric
truncated exponential. The experiment is enabled by a qubit coupled to a cavity, with a coupling strength that can be tuned in tens of nanoseconds while maintaining a constant dressed state emission frequency. Symmetrization of the photonic wave packet will enable use of photons as flying qubits for transfering the quantum state between atoms in distant cavities.

A scanning transmon qubit for strong coupling circuit quantum electrodynamics

  1. William E. Shanks,
  2. Devin L. Underwood,
  3. and Andrew A. Houck
Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modeling of quantum systems that is computationally intractable with a
classical computer. Quantum simulations of quantum many-body systems have been performed using ultracold atoms and trapped ions among other systems. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the nonequilibrium physics of interacting bosons but new tools are needed to understand this complex behavior. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.