Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit

  1. Gengyan Zhang,
  2. Yanbing Liu,
  3. James J. Raftery,
  4. and Andrew A. Houck
We demonstrate the suppression of photon shot noise dephasing in a superconducting qubit by eliminating its dispersive coupling to the readout cavity. This is achieved in a tunable

Broadband Filters for Abatement of Spontaneous Emission for Superconducting Qubits

  1. Nicholas T. Bronn,
  2. Yanbing Liu,
  3. Jared B. Hertzberg,
  4. Antonio D. Córcoles,
  5. Andrew A. Houck,
  6. Jay M. Gambetta,
  7. and Jerry M. Chow
The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential for the goal of building a quantum computer. However, the parameters of a superconducting qubit

Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

  1. Alessandro Chiesa,
  2. Paolo Santini,
  3. Dario Gerace,
  4. James Raftery,
  5. Andrew A. Houck,
  6. and Stefano Carretta
Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be

Beyond Strong Coupling in a Massively Multimode Cavity

  1. Neereja M. Sundaresan,
  2. Yanbing Liu,
  3. Darius Sadri,
  4. Laszlo J. Szocs,
  5. Devin L. Underwood,
  6. Moein Malekakhlagh,
  7. Hakan E. Tureci,
  8. and Andrew A. Houck
The study of light-matter interaction has seen a resurgence in recent years, stimulated by highly controllable, precise, and modular experiments in cavity quantum electrodynamics (QED).

Stochastic Differential Equations for Quantum Dynamics of Spin-Boson Networks

  1. Stephan Mandt,
  2. Darius Sadri,
  3. Andrew A. Houck,
  4. and Hakan E. Türeci
The quantum dynamics of open many-body systems poses a challenge for computational approaches. Here we develop a stochastic scheme based on the positive P phase-space representation

Observation of a Dissipation-Induced Classical to Quantum Transition

  1. James Raftery,
  2. Darius Sadri,
  3. Sebastian Schmidt,
  4. Hakan E. Türeci,
  5. and Andrew A. Houck
The emergence of non-trivial structure in many-body physics has been a central topic of research bearing on many branches of science. Important recent work has explored the non-equilibrium

Time-Reversal Symmetrization of Spontaneous Emission for High Fidelity Quantum State Transfer

  1. Srikanth J. Srinivasan,
  2. Neereja M. Sundaresan,
  3. Darius Sadri,
  4. Yanbing Liu,
  5. Jay M. Gambetta,
  6. Terri Yu,
  7. S. M. Girvin,
  8. and Andrew A. Houck
We demonstrate the ability to control the spontaneous emission from a superconducting qubit coupled to a cavity. The time domain profile of the emitted photon is shaped into a symmetric

A scanning transmon qubit for strong coupling circuit quantum electrodynamics

  1. William E. Shanks,
  2. Devin L. Underwood,
  3. and Andrew A. Houck
Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modeling of quantum systems that is computationally intractable with a

Low-Disorder Microwave Cavity Lattices for Quantum Simulation with Photons

  1. Devin L. Underwood,
  2. Will E. Shanks,
  3. Jens Koch,
  4. and Andrew A. Houck
We assess experimentally the suitability of coupled transmission line resonators for studies of quantum phase transitions of light. We have measured devices with low photon hopping