Dynamics of superconducting qubit relaxation times

  1. Malcolm Carroll,
  2. Sami Rosenblatt,
  3. Petar Jurcevic,
  4. Isaac Lauer,
  5. and Abhinav Kandala
Superconducting qubits are a leading candidate for quantum computing but display temporal fluctuations in their energy relaxation times T1. This introduces instabilities in multi-qubit

Quantum optimization using variational algorithms on near-term quantum devices

  1. Nikolaj Moll,
  2. Panagiotis Barkoutsos,
  3. Lev S. Bishop,
  4. Jerry M. Chow,
  5. Andrew Cross,
  6. Daniel J. Egger,
  7. Stefan Filipp,
  8. Andreas Fuhrer,
  9. Jay M. Gambetta,
  10. Marc Ganzhorn,
  11. Abhinav Kandala,
  12. Antonio Mezzacapo,
  13. Peter Müller,
  14. Walter Riess,
  15. Gian Salis,
  16. John Smolin,
  17. Ivano Tavernelli,
  18. and Kristan Temme
Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits.

Hardware-efficient Quantum Optimizer for Small Molecules and Quantum Magnets

  1. Abhinav Kandala,
  2. Antonio Mezzacapo,
  3. Kristan Temme,
  4. Maika Takita,
  5. Jerry M. Chow,
  6. and Jay M. Gambetta
Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance