Computed tomography of propagating microwave photons

  1. Qi-Ming Chen,
  2. Aarne Keränen,
  3. Aashish Sah,
  4. and Mikko Möttönen
Propagating photons serve as essential links for distributing quantum information and entanglement across distant nodes. Knowledge of their Wigner functions not only enables their deployment
as active information carriers but also provides error diagnostics when photons passively leak from a quantum processing unit. While well-established for standing waves, characterizing propagating microwave photons requires post-processing of room-temperature signals with excessive amplification noise. Here, we demonstrate cryogenic and amplification-free Wigner function tomography of propagating microwave photons using a superconductor-normal metal-superconductor bolometer based on the resistive heating effect of absorbed radiation. By introducing two-field interference in power detection, the bolometer acts as a sensitive and broadband quadrature detector that samples the input field at selected angles at millikelvin with no added noise. Adapting the principles of computed tomography (CT) in medical imaging, we implement Wigner function CT by combining quadrature histograms across different projection angles and demonstrate it for Gaussian states at the single-photon level with different symmetries. Compressed sensing and neural networks further reduce the projections to three without compromising the reconstruction quality. These results address the long-standing challenge of characterizing propagating microwave photons in a superconducting quantum network and establish a new avenue for real-time quantum error diagnostics and correction.

Many-excitation removal of a transmon qubit using a single-junction quantum-circuit refrigerator and a two-tone microwave drive

  1. Wallace Teixeira,
  2. Timm Mörstedt,
  3. Arto Viitanen,
  4. Heidi Kivijärvi,
  5. András Gunyhó,
  6. Maaria Tiiri,
  7. Suman Kundu,
  8. Aashish Sah,
  9. Vasilii Vadimov,
  10. and Mikko Möttönen
Achieving fast and precise initialization of qubits is a critical requirement for the successful operation of quantum computers. The combination of engineered environments with all-microwave
techniques has recently emerged as a promising approach for the reset of superconducting quantum devices. In this work, we experimentally demonstrate the utilization of a single-junction quantum-circuit refrigerator (QCR) for an expeditious removal of several excitations from a transmon qubit. The QCR is indirectly coupled to the transmon through a resonator in the dispersive regime, constituting a carefully engineered environmental spectrum for the transmon. Using single-shot readout, we observe excitation stabilization times down to roughly 500 ns, a 20-fold speedup with QCR and a simultaneous two-tone drive addressing the e-f and f0-g1 transitions of the system. Our results are obtained at a 48-mK fridge temperature and without postselection, fully capturing the advantage of the protocol for the short-time dynamics and the drive-induced detrimental asymptotic behavior in the presence of relatively hot other baths of the transmon. We validate our results with a detailed Liouvillian model truncated up to the three-excitation subspace, from which we estimate the performance of the protocol in optimized scenarios, such as cold transmon baths and fine-tuned driving frequencies. These results pave the way for optimized reset of quantum-electric devices using engineered environments and for dissipation-engineered state preparation.