Vortex-Meissner phase transition induced by two-tone-drive-engineered artificial gauge potential in the fermionic ladder constructed by superconducting qubit circuits

  1. Yan-Jun Zhao,
  2. Xun-Wei Xu,
  3. Hui Wang,
  4. Yu-xi Liu,
  5. and Wu-Ming Liu
We propose to periodically modulate the onsite energy via two-tone drives, which can be furthermore used to engineer artificial gauge potential. As an example, we show that the fermionic ladder model penetrated with effective magnetic flux can be constructed by superconducting flux qubits using such two-tone-drive-engineered artificial gauge potential. In this superconducting system, the single-particle ground state can range from vortex phase to Meissner phase due to the competition between the interleg coupling strength and the effective magnetic flux. We also present the method to experimentally measure the chiral currents by the single-particle Rabi oscillations between adjacent qubits. In contrast to previous methods of generating artifical gauge potential, our proposal does not need the aid of auxiliary couplers and in principle remains valid only if the qubit circuit maintains enough anharmonicity. The fermionic ladder model with effective magnetic flux can also be interpreted as one-dimensional spin-orbit-coupled model, which thus lay a foundation towards the realization of quantum spin Hall effect.

leave comment