Tunable slowing, storing and releasing of a weak microwave field

  1. Keyu Xia
We study the slowing, storing and releasing of microwave pulses in a superconducting circuits composed of two coplanar waveguide resonators and a superconducting transmon-type qubit. The quantum interference analogy to electromagnetically induced transparency is created in two coupled resonators. By tuning the resonance frequency of the transmon, we dynamically tune the effective coupling between the resonators. Via the modulation of the coupling, we show the tunable true time delay of microwave pulses at the single-photon level. We also store the microwave field in a high-Q resonator and release the signal from it to the output port. Our scheme promises applications in both quantum information processing and classical wireless communications.

leave comment