Tunable Microwave Single-photon Source Based on Transmon Qubit with High Efficiency
Single-photon sources are of great interest because they are key elements in different promising applications of quantum technologies. Here we demonstrate a highly efficient tunable on-demand microwave single-photon source based on a transmon qubit with the intrinsic emission efficiency more than 99%. To confirm the single-photon property of the source, we study the single-photon interference in a Hanbury-Brown-Twiss (HBT) type setup and measure the correlation functions of the emission field using linear detectors with a GPU-enhanced signal processing technique. The antibunching in the second-order correlation function is clearly observed. The theoretical calculations agree well with the experimental results. Such a high-quality single-photon source can be used as a building block of devices for quantum communication, simulations and information processing in the microwave regime.