The quantromon: A qubit-resonator system with orthogonal qubit and readout modes

  1. Kishor V. Salunkhe,
  2. Suman Kundu,
  3. Srijita Das,
  4. Jay Deshmukh,
  5. Meghan P. Patankar,
  6. and R. Vijay
The measurement of a superconducting qubit is implemented by coupling it to a resonator. The common choice is transverse coupling, which, in the dispersive approximation, introduces an interaction term which enables the measurement. This cross-Kerr term provides a qubit-state dependent dispersive shift in the resonator frequency with the device parameters chosen carefully to get sufficient signal while minimizing Purcell decay of the qubit. We introduce a two-mode circuit, nicknamed quantromon, with two orthogonal modes implementing a qubit and a resonator. Unlike before, where the coupling term emerges as a perturbative expansion, the quantromon has intrinsic cross-Kerr coupling by design. Our experiments implemented in a hybrid 2D-3D cQED architecture demonstrate some unique features of the quantromon like weak dependence of the dispersive shift on the qubit-resonator detuning and intrinsic Purcell protection. In a tunable qubit-frequency device, we show that the dispersive shift (2χ/2π) changes by only 0.8 MHz while the qubit-resonator detuning (Δ/2π) is varied between 0.398 GHz – 3.288 GHz. We also demonstrate Purcell protection in a second device where we tune the orthogonality between the two modes. Finally, we demonstrate a single-shot readout fidelity of 98.3% without using a parametric amplifier which is comparable to the state-of-the-art and suggests a potential simplification of the measurement circuitry for scaling up quantum processors.

leave comment