Superconducting coupler with exponentially large on-off ratio
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors. However, most couplers operate in a narrow frequency band and target specific couplings, such as the spurious ZZ interaction. We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio and without the need for fine-tuning. Our approach is based on a bus mode supplemented by an ancillary nonlinear resonator mode. Driving the ancillary mode leads to a coupler-state-dependent field displacement in the resonator which, in turn, results in an exponential suppression of real and virtual two-qubit interactions with respect to the drive power. A superconducting circuit implementation supporting the proposed mechanism is presented.