Simulating moving cavities in superconducting circuits
We theoretically investigate the simulation of moving cavities in a superconducting circuit setup. In particular, we consider a recently proposed experimental scenario where the phase of the cavity field is used as a moving clock. By computing the error made when simulating the cavity trajectory with SQUIDs, we identify parameter regimes where the correspondence holds, and where time dilation, as well as corrections due to clock size and particle creation coefficients, are observable. These findings may serve as a guideline when performing experiments on simulation of moving cavities in superconducting circuits.