Scattering of coherent states on a single artificial atom
In this work we theoretically analyze a circuit QED design where propagating
quantum microwaves interact with a single artificial atom, a single Cooper pair
box. In particular, we derive a master equation in the so-called transmon
regime, including coherent drives. Inspired by recent experiments, we then
apply the master equation to describe the dynamics in both a two-level and a
three-level approximation of the atom. In the two-level case, we also discuss
how to measure photon antibunching in the reflected field and how it is
affected by finite temperature and finite detection bandwidth.