Reversing quantum trajectories with analog feedback

  1. G. de Lange,
  2. D. Ristè,
  3. M. J. Tiggelman,
  4. C. Eichler,
  5. L. Tornberg,
  6. G. Johansson,
  7. A. Wallraff,
  8. R. N. Schouten,
  9. and L. DiCarlo
We demonstrate the active suppression of transmon qubit dephasing induced by dispersive measurement, using parametric amplification and analog feedback. By real-time processing of the homodyne record, the feedback controller reverts the stochastic quantum phase kick imparted by the measurement on the qubit. The feedback operation matches a model of quantum trajectories with measurement efficiency η~≈0.5, consistent with the result obtained by postselection. We overcome the bandwidth limitations of the amplification chain by numerically optimizing the signal processing in the feedback loop and provide a theoretical model explaining the optimization result.

leave comment