Quantum State Sensitivity of an Autoresonant Superconducting Circuit
When a frequency chirped excitation is applied to a classical high-Q
nonlinear oscillator, its motion becomes dynamically synchronized to the drive
and large oscillation amplitude is observed, provided the drive strength
exceeds the critical threshold for autoresonance. We demonstrate that when such
an oscillator is strongly coupled to a quantized superconducting qubit, both
the effective nonlinearity and the threshold become a non-trivial function of
the qubit-oscillator detuning. Moreover, the autoresonant threshold is
sensitive to the quantum state of the qubit and may be used to realize a high
fidelity, latching readout whose speed is not limited by the oscillator Q.