Quantum Simulations of Relativistic Quantum Physics in Circuit QED
We present a scheme for simulating relativistic quantum physics in circuit
quantum electrodynamics. By using three classical microwave drives, we show
that a superconducting qubit strongly-coupled to a resonator field mode can be
used to simulate the dynamics of the Dirac equation and Klein paradox in all
regimes. Using the same setup we also propose the implementation of the
Foldy-Wouthuysen canonical transformation, after which the time derivative of
the position operator becomes a constant of the motion.