Protected Fluxonium Control with Sub-harmonic Parametric Driving

  1. Johannes Schirk,
  2. Florian Wallner,
  3. Longxiang Huang,
  4. Ivan Tsitsilin,
  5. Niklas Bruckmoser,
  6. Leon Koch,
  7. David Bunch,
  8. Niklas J. Glaser,
  9. Gerhard B. P. Huber,
  10. Martin Knudsen,
  11. Gleb Krylov,
  12. Achim Marx,
  13. Frederik Pfeiffer,
  14. Lea Richard,
  15. Federico A. Roy,
  16. João H. Romeiro,
  17. Malay Singh,
  18. Lasse Södergren,
  19. Etienne Dionis,
  20. Dominique Sugny,
  21. Max Werninghaus,
  22. Klaus Liegener,
  23. Christian M. F. Schneider,
  24. and Stefan Filipp
Protecting qubits from environmental noise while maintaining strong coupling for fast high-fidelity control is a central challenge for quantum information processing. Here, we demonstrate a novel control scheme for superconducting fluxonium qubits that eliminates qubit decay through the control channel by reducing the environmental density of states at the transition frequency. Adding a low-pass filter on the flux line allows for flux-biasing and at the same time coherently controlling the fluxonium qubit by parametrically driving it at integer fractions of its transition frequency. We compare the filtered to the unfiltered configuration and find a five times longer T1, and ten times improved T2-echo time in the protected case. We demonstrate coherent control with up to 11-photon sub-harmonic drives, highlighting the strong non-linearity of the fluxonium potential. We experimentally determine Rabi frequencies and drive-induced frequency shifts in excellent agreement with numerical and analytical calculations. Furthermore, we show the equivalence of a 3-photon sub-harmonic drive to an on-resonance drive by benchmarking sub-harmonic gate fidelities above 99.94 %. These results open up a scalable path for full qubit control via a single protected channel, strongly suppressing qubit decoherence caused by control lines.

leave comment