Probing Correlations, Indistinguishability and Entanglement in Microwave Two-Photon Interference
Interference at a beam splitter reveals both classical and quantum properties
of electromagnetic radiation. When two indistinguishable single photons impinge
at the two inputs of a beam splitter they coalesce into a pair of photons
appearing in either one of its two outputs. This effect is due to the bosonic
nature of photons and was first experimentally observed by Hong, Ou, and Mandel
(HOM) [1]. Here, we present the observation of the HOM effect with two
independent single-photon sources in the microwave frequency domain. We probe
the indistinguishability of single photons, created with a controllable delay,
in time-resolved second-order cross- and auto-correlation function
measurements. Using quadrature amplitude detection we are able to resolve
different photon numbers and detect coherence in and between the output arms.
This measurement scheme allows us to observe the HOM effect and, in addition,
to fully characterize the two-mode entanglement of the spatially separated beam
splitter output modes. Our experiments constitute a first step towards using
two-photon interference at microwave frequencies for quantum communication and
information processing, e.g. for distributing entanglement between nodes of a
quantum network [2, 3] and for linear optics quantum computation [4, 5].